Min Peng


2025

pdf bib
DialogueMMT: Dialogue Scenes Understanding Enhanced Multi-modal Multi-task Tuning for Emotion Recognition in Conversations
ChenYuan He | Senbin Zhu | Hongde Liu | Fei Gao | Yuxiang Jia | Hongying Zan | Min Peng
Proceedings of the 31st International Conference on Computational Linguistics

Emotion recognition in conversations (ERC) has garnered significant attention from the research community. However, due to the complexity of visual scenes and dialogue contextual dependencies in conversations, previous ERC methods fail to handle emotional cues from both visual sources and discourse structures. Furthermore, existing state-of-the-art ERC models are trained and tested separately on each single ERC dataset, not verifying their effectiveness across multiple datasets simultaneously. To address these challenges, this paper proposes an innovative framework for ERC, called Dialogue Scenes Understanding Enhanced Multi-modal Multi-task Tuning (DialogueMMT). More concretely, a novel video-language connector is applied within the large vision-language model for capturing video features effectively. Additionally, we utilize multi-task instruction tuning with a unified ERC dataset to enhance the model’s understanding of multi-modal dialogue scenes and employ a chain-of-thought strategy to improve emotion classification performance. Extensive experimental results on three benchmark ERC datasets indicate that the proposed DialogueMMT framework consistently outperforms existing state-of-the-art approaches in terms of overall performance.

pdf bib
GenWebNovel: A Genre-oriented Corpus of Entities in Chinese Web Novels
Hanjie Zhao | Yuchen Yan | Senbin Zhu | Hongde Liu | Yuxiang Jia | Hongying Zan | Min Peng
Proceedings of the 31st International Conference on Computational Linguistics

Entities are important to understanding literary works, which emphasize characters, plots and environment. The research on entity recognition, especially nested entity recognition in the literary domain is still insufficient partly due to insufficient annotated data. To address this issue, we construct the first Genre-oriented Corpus for Entity Recognition in Chinese Web Novels, namely GenWebNovel, comprising 400 chapters totaling 1,214,283 tokens under two genres, XuanHuan (Eastern Fantasy) and History. Based on the corpus, we analyze the distribution of different types of entities, including person, location, and organization. We also compare the nesting patterns of nested entities between GenWebNovel and the English corpus LitBank. Even though both belong to the literary domain, entities in different genres share few overlaps, making genre adaptation of NER (Named Entity Recognition) a hard problem. We propose a novel method that utilizes a pre-trained language model as an In-context learning example retriever to boost the performance of large language models. Our experiments show that this approach significantly enhances entity recognition, matching state-of-the-art (SOTA) models without requiring additional training data. Our code, dataset, and model are available at https://github.com/hjzhao73/GenWebNovel.

pdf bib
SILC-EFSA: Self-aware In-context Learning Correction for Entity-level Financial Sentiment Analysis
Senbin Zhu | ChenYuan He | Hongde Liu | Pengcheng Dong | Hanjie Zhao | Yuchen Yan | Yuxiang Jia | Hongying Zan | Min Peng
Proceedings of the 31st International Conference on Computational Linguistics

In recent years, fine-grained sentiment analysis in finance has gained significant attention, but the scarcity of entity-level datasets remains a key challenge. To address this, we have constructed the largest English and Chinese financial entity-level sentiment analysis datasets to date. Building on this foundation, we propose a novel two-stage sentiment analysis approach called Self-aware In-context Learning Correction (SILC). The first stage involves fine-tuning a base large language model to generate pseudo-labeled data specific to our task. In the second stage, we train a correction model using a GNN-based example retriever, which is informed by the pseudo-labeled data. This two-stage strategy has allowed us to achieve state-of-the-art performance on the newly constructed datasets, advancing the field of financial sentiment analysis. In a case study, we demonstrate the enhanced practical utility of our data and methods in monitoring the cryptocurrency market. Our datasets and code are available at https://github.com/NLP-Bin/SILC-EFSA.

pdf bib
CaDRL: Document-level Relation Extraction via Context-aware Differentiable Rule Learning
Kunli Zhang | Pengcheng Wu | Bohan Yu | Kejun Wu | Aoze Zheng | Xiyang Huang | Chenkang Zhu | Min Peng | Hongying Zan | Yu Song
Proceedings of the 31st International Conference on Computational Linguistics

Document-level Relation Extraction (DocRE) aims to extract relations from documents. Compared with sentence-level relation extraction, it is necessary to extract long-distance dependencies. Existing methods enhance the output of trained DocRE models either by learning logical rules or by extracting rules from annotated data and then injecting them into the model. However, these approaches can result in suboptimal performance due to incorrect rule set constraints. To mitigate this issue, we propose Context-aware differentiable rule learning or CaDRL for short, a novel differentiable rule-based framework that learns the doc-specific logical rule to avoid generating suboptimal constraints. Specifically, we utilize Transformer-based relation attention to encode document and relation information, thereby learning the contextual information of the relation. We employ a sequence-generated differentiable rule decoder to generate relational probabilistic logic rules at each reasoning step. We also introduce a parameter sharing training mechanism in CaDRL to reconcile the DocRE model and the rule learning module. Extensive experimental results on three DocRE datasets demonstrate that CaDRL outperforms existing rule-based frameworks, significantly improving DocRE performance and making predictions more interpretable and logical.

pdf bib
Filter-then-Generate: Large Language Models with Structure-Text Adapter for Knowledge Graph Completion
Ben Liu | Jihai Zhang | Fangquan Lin | Cheng Yang | Min Peng
Proceedings of the 31st International Conference on Computational Linguistics

Large Language Models (LLMs) present massive inherent knowledge and superior semantic comprehension capability, which have revolutionized various tasks in natural language processing. Despite their success, a critical gap remains in enabling LLMs to perform knowledge graph completion (KGC). Empirical evidence suggests that LLMs consistently perform worse than conventional KGC approaches, even through sophisticated prompt design or tailored instruction-tuning. Fundamentally, applying LLMs on KGC introduces several critical challenges, including a vast set of entity candidates, hallucination issue of LLMs, and under-exploitation of the graph structure. To address these challenges, we propose a novel instruction-tuning-based method, namely FtG. Specifically, we present a filter-then-generate paradigm and formulate the KGC task into a multiple-choice question format. In this way, we can harness the capability of LLMs while mitigating the issue casused by hallucinations. Moreover, we devise a flexible ego-graph serialization prompt and employ a structure-text adapter to couple structure and text information in a contextualized manner. Experimental results demonstrate that FtG achieves substantial performance gain compared to existing state-of-the-art methods. The instruction dataset and code are available at https://github.com/LB0828/FtG.

2024

pdf bib
HealMe: Harnessing Cognitive Reframing in Large Language Models for Psychotherapy
Mengxi Xiao | Qianqian Xie | Ziyan Kuang | Zhicheng Liu | Kailai Yang | Min Peng | Weiguang Han | Jimin Huang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large Language Models (LLMs) can play a vital role in psychotherapy by adeptly handling the crucial task of cognitive reframing and overcoming challenges such as shame, distrust, therapist skill variability, and resource scarcity. Previous LLMs in cognitive reframing mainly converted negative emotions to positive ones, but these approaches have limited efficacy, often not promoting clients’ self-discovery of alternative perspectives. In this paper, we unveil the Helping and Empowering through Adaptive Language in Mental Enhancement (HealMe) model. This novel cognitive reframing therapy method effectively addresses deep-rooted negative thoughts and fosters rational, balanced perspectives. Diverging from traditional LLM methods, HealMe employs empathetic dialogue based on psychotherapeutic frameworks. It systematically guides clients through distinguishing circumstances from feelings, brainstorming alternative viewpoints, and developing empathetic, actionable suggestions. Moreover, we adopt the first comprehensive and expertly crafted psychological evaluation metrics, specifically designed to rigorously assess the performance of cognitive reframing, in both AI-simulated dialogues and real-world therapeutic conversations. Experimental results show that our model outperforms others in terms of empathy, guidance, and logical coherence, demonstrating its effectiveness and potential positive impact on psychotherapy.

pdf bib
Deja vu: Contrastive Historical Modeling with Prefix-tuning for Temporal Knowledge Graph Reasoning
Miao Peng | Ben Liu | Wenjie Xu | Zihao Jiang | Jiahui Zhu | Min Peng
Findings of the Association for Computational Linguistics: NAACL 2024

Temporal Knowledge Graph Reasoning (TKGR) is the task of inferring missing facts for incomplete TKGs in complex scenarios (e.g., transductive and inductive settings), which has been gaining increasing attention. Recently, to mitigate dependence on structured connections in TKGs, text-based methods have been developed to utilize rich linguistic information from entity descriptions. However, suffering from the enormous parameters and inflexibility of pre-trained language models, existing text-based methods struggle to balance the textual knowledge and temporal information with computationally expensive purpose-built training strategies. To tap the potential of text-based models for TKGR in various complex scenarios, we propose ChapTER, a Contrastive historical modeling framework with prefix-tuning for TEmporal Reasoning. ChapTER feeds history-contextualized text into the pseudo-Siamese encoders to strike a textual-temporal balance via contrastive estimation between queries and candidates. By introducing virtual time prefix tokens, it applies a prefix-based tuning method to facilitate the frozen PLM capable for TKGR tasks under different settings. We evaluate ChapTER on four transductive and three few-shot inductive TKGR benchmarks, and experimental results demonstrate that ChapTER achieves superior performance compared to competitive baselines with only 0.17% tuned parameters. We conduct thorough analysis to verify the effectiveness, flexibility and efficiency of ChapTER.

pdf bib
FinNLP-AgentScen-2024 Shared Task: Financial Challenges in Large Language Models - FinLLMs
Qianqian Xie | Jimin Huang | Dong Li | Zhengyu Chen | Ruoyu Xiang | Mengxi Xiao | Yangyang Yu | Vijayasai Somasundaram | Kailai Yang | Chenhan Yuan | Zheheng Luo | Zhiwei Liu | Yueru He | Yuechen Jiang | Haohang Li | Duanyu Feng | Xiao-Yang Liu | Benyou Wang | Hao Wang | Yanzhao Lai | Jordan Suchow | Alejandro Lopez-Lira | Min Peng | Sophia Ananiadou
Proceedings of the Eighth Financial Technology and Natural Language Processing and the 1st Agent AI for Scenario Planning

2023

pdf bib
Pre-trained Language Model with Prompts for Temporal Knowledge Graph Completion
Wenjie Xu | Ben Liu | Miao Peng | Xu Jia | Min Peng
Findings of the Association for Computational Linguistics: ACL 2023

Temporal Knowledge graph completion (TKGC) is a crucial task that involves reasoning at known timestamps to complete the missing part of facts and has attracted more and more attention in recent years. Most existing methods focus on learning representations based on graph neural networks while inaccurately extracting information from timestamps and insufficiently utilizing the implied information in relations. To address these problems, we propose a novel TKGC model, namely Pre-trained Language Model with Prompts for TKGC (PPT). We convert a series of sampled quadruples into pre-trained language model inputs and convert intervals between timestamps into different prompts to make coherent sentences with implicit semantic information. We train our model with a masking strategy to convert TKGC task into a masked token prediction task, which can leverage the semantic information in pre-trained language models. Experiments on three benchmark datasets and extensive analysis demonstrate that our model has great competitiveness compared to other models with four metrics. Our model can effectively incorporate information from temporal knowledge graphs into the language models.

2022

pdf bib
SMiLE: Schema-augmented Multi-level Contrastive Learning for Knowledge Graph Link Prediction
Miao Peng | Ben Liu | Qianqian Xie | Wenjie Xu | Hua Wang | Min Peng
Findings of the Association for Computational Linguistics: EMNLP 2022

Link prediction is the task of inferring missing links between entities in knowledge graphs. Embedding-based methods have shown effectiveness in addressing this problem by modeling relational patterns in triples. However, the link prediction task often requires contextual information in entity neighborhoods, while most existing embedding-based methods fail to capture it. Additionally, little attention is paid to the diversity of entity representations in different contexts, which often leads to false prediction results. In this situation, we consider that the schema of knowledge graph contains the specific contextual information, and it is beneficial for preserving the consistency of entities across contexts. In this paper, we propose a novel Schema-augmented Multi-level contrastive LEarning framework (SMiLE) to conduct knowledge graph link prediction. Specifically, we first exploit network schema as the prior constraint to sample negatives and pre-train our model by employing a multi-level contrastive learning method to yield both prior schema and contextual information. Then we fine-tune our model under the supervision of individual triples to learn subtler representations for link prediction. Extensive experimental results on four knowledge graph datasets with thorough analysis of each component demonstrate the effectiveness of our proposed framework against state-of-the-art baselines. The implementation of SMiLE is available at https://github.com/GKNL/SMiLE.

2021

pdf bib
Graph Relational Topic Model with Higher-order Graph Attention Auto-encoders
Qianqian Xie | Jimin Huang | Pan Du | Min Peng
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Inductive Topic Variational Graph Auto-Encoder for Text Classification
Qianqian Xie | Jimin Huang | Pan Du | Min Peng | Jian-Yun Nie
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Graph convolutional networks (GCNs) have been applied recently to text classification and produced an excellent performance. However, existing GCN-based methods do not assume an explicit latent semantic structure of documents, making learned representations less effective and difficult to interpret. They are also transductive in nature, thus cannot handle out-of-graph documents. To address these issues, we propose a novel model named inductive Topic Variational Graph Auto-Encoder (T-VGAE), which incorporates a topic model into variational graph-auto-encoder (VGAE) to capture the hidden semantic information between documents and words. T-VGAE inherits the interpretability of the topic model and the efficient information propagation mechanism of VGAE. It learns probabilistic representations of words and documents by jointly encoding and reconstructing the global word-level graph and bipartite graphs of documents, where each document is considered individually and decoupled from the global correlation graph so as to enable inductive learning. Our experiments on several benchmark datasets show that our method outperforms the existing competitive models on supervised and semi-supervised text classification, as well as unsupervised text representation learning. In addition, it has higher interpretability and is able to deal with unseen documents.

2018

pdf bib
Neural Sparse Topical Coding
Min Peng | Qianqian Xie | Yanchun Zhang | Hua Wang | Xiuzhen Zhang | Jimin Huang | Gang Tian
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Topic models with sparsity enhancement have been proven to be effective at learning discriminative and coherent latent topics of short texts, which is critical to many scientific and engineering applications. However, the extensions of these models require carefully tailored graphical models and re-deduced inference algorithms, limiting their variations and applications. We propose a novel sparsity-enhanced topic model, Neural Sparse Topical Coding (NSTC) base on a sparsity-enhanced topic model called Sparse Topical Coding (STC). It focuses on replacing the complex inference process with the back propagation, which makes the model easy to explore extensions. Moreover, the external semantic information of words in word embeddings is incorporated to improve the representation of short texts. To illustrate the flexibility offered by the neural network based framework, we present three extensions base on NSTC without re-deduced inference algorithms. Experiments on Web Snippet and 20Newsgroups datasets demonstrate that our models outperform existing methods.