Large language models (LLMs) have achieved promising results in sentiment analysis through the in-context learning (ICL) paradigm. However, their ability to distinguish subtle sentiments still remains a challenge. Inspired by the human ability to adjust understanding via feedback, this paper enhances ICL by incorporating prior predictions and feedback, aiming to rectify sentiment misinterpretation of LLMs. Specifically, the proposed framework consists of three steps: (1) acquiring prior predictions of LLMs, (2) devising predictive feedback based on correctness, and (3) leveraging a feedback-driven prompt to refine sentiment understanding. Experimental results across nine sentiment analysis datasets demonstrate the superiority of our framework over conventional ICL methods, with an average F1 improvement of 5.95%.
The rapid development of Large Language Models (LLMs) has led to their increasing utilization in Chinese K-12 education. Despite the growing integration of LLMs and education, the absence of a dedicated benchmark for evaluating LLMs within this domain presents a pressing concern. Consequently, there is an urgent need for a comprehensive natural language processing benchmark to precisely assess the capabilities of various LLMs in Chinese K-12 education. In response, we introduce E-EVAL, the first comprehensive evaluation benchmark specifically tailored for Chinese K-12 education. E-EVAL comprises 4,351 multiple-choice questions spanning primary, middle, and high school levels, covering a diverse array of subjects. Through meticulous evaluation, we find that Chinese-dominant models often outperform English-dominant ones, with many exceeding GPT 4.0. However, most struggle with complex subjects like mathematics. Additionally, our analysis indicates that most Chinese-dominant LLMs do not achieve higher scores at the primary school level compared to the middle school level, highlighting the nuanced relationship between proficiency in higher-order and lower-order knowledge domains. Furthermore, experimental results highlight the effectiveness of the Chain of Thought (CoT) technique in scientific subjects and Few-shot prompting in liberal arts. Through E-EVAL, we aim to conduct a rigorous analysis delineating the strengths and limitations of LLMs in educational applications, thereby contributing significantly to the advancement of Chinese K-12 education and LLMs.
End-to-end argumentation mining (AM) aims to extract the argumentation structure including argumentation components and their argumentation relations from text. Recent developments in end-to-end AM models have demonstrated significant progress by redefining the AM task as a sequence generation task, exhibiting simplicity and competitive performance. Nevertheless, these models overlook the integration of supplementary discourse structure information, a crucial factor for comprehending argumentation structures, resulting in suboptimal outcomes. In this study, we propose the DENIM framework, which generates discourse structure-aware prefixes for each layer of the generation model. These prefixes imbue the generation-based AM model with discourse structures, thereby augmenting the overall generation process. Moreover, we introduce a multi-task prompt coupled with a three-step decoding strategy, aiming to optimize the efficiency and effectiveness of argumentation structure decoding. Extensive experiments and analyses on two benchmark datasets show that DENIM achieves state-of-the-art performances on two AM benchmarks.
Argumentative Essay Generation (AEG) is a challenging task in computational argumentation, where detailed logical reasoning and effective rhetorical skills are essential.Previous methods on argument generation typically involve planning prior to generation.However, the planning strategies in these methods overlook the exploration of the logical reasoning process.Inspired by argument structure-related theories, we propose an argumentative planning strategy for prompting large language models (LLMs) to generate high-quality essays.This strategy comprises two stages: (1) Sketch planning, which creates a rough outline of the essay, and (2) Dialectical planning, which refines the outline through critical self-reflection.Such a planning strategy enables LLMs to write argumentative essays that are more logical, diverse, and persuasive.Furthermore, due to the scarcity of existing AEG datasets, we construct three new datasets.These datasets are from two domains: exam essays and news editorials, covering both Chinese and English.Automatic and manual evaluation on four datasets show that our method can generate more dialectical and persuasive essays with higher diversity compared to several strong baselines.
Stance detection is a challenging task that aims to identify public opinion from social media platforms with respect to specific targets. Previous work on stance detection largely focused on pure texts. In this paper, we study multi-modal stance detection for tweets consisting of texts and images, which are prevalent in today’s fast-growing social media platforms where people often post multi-modal messages. To this end, we create five new multi-modal stance detection datasets of different domains based on Twitter, in which each example consists of a text and an image. In addition, we propose a simple yet effective Targeted Multi-modal Prompt Tuning framework (TMPT), where target information is leveraged to learn multi-modal stance features from textual and visual modalities. Experimental results on our five benchmark datasets show that the proposed TMPT achieves state-of-the-art performance in multi-modal stance detection.
Using large language models (LLMs) to assist psychological counseling is a significant but challenging task at present. Attempts have been made on improving empathetic conversations or acting as effective assistants in the treatment with LLMs. However, the existing datasets lack consulting knowledge, resulting in LLMs lacking professional consulting competence. Moreover, how to automatically evaluate multi-turn dialogues within the counseling process remains an understudied area. To bridge the gap, we propose CPsyCoun, a report-based multi-turn dialogue reconstruction and evaluation framework for Chinese psychological counseling. To fully exploit psychological counseling reports, a two-phase approach is devised to construct high-quality dialogues while a comprehensive evaluation benchmark is developed for the effective automatic evaluation of multi-turn psychological consultations. Competitive experimental results demonstrate the effectiveness of our proposed framework in psychological counseling. We open-source the datasets and model for future research.
Numeral systems and units of measurement are two conjoined topics in activities of human beings and have mutual effects with the languages expressing them. Currently, the evaluation of Large Language Models (LLMs) often involves mathematical reasoning, yet little attention is given to how minor changes in numbers or units can drastically alter the complexity of problems and the performance of LLMs. In this paper, we scrutinize existing LLMs on processing of numerals and units of measurement by constructing datasets with perturbations. We first anatomize the reasoning of math word problems to different sub-procedures like numeral conversions from language to numbers and measurement conversions based on units. Then we further annotate math word problems from ancient Chinese arithmetic works which are challenging in numerals and units of measurement. Experiments on perturbed datasets demonstrate that LLMs still encounter difficulties in handling numeral and measurement conversions.
Previous stance detection studies typically concentrate on evaluating stances within individual instances, thereby exhibiting limitations in effectively modeling multi-party discussions concerning the same specific topic, as naturally transpire in authentic social media interactions. This constraint arises primarily due to the scarcity of datasets that authentically replicate real social media contexts, hindering the research progress of conversational stance detection. In this paper, we introduce a new multi-turn conversation stance detection dataset (called MT-CSD), which encompasses multiple targets for conversational stance detection. To derive stances from this challenging dataset, we propose a global-local attention network (GLAN) to address both long and short-range dependencies inherent in conversational data. Notably, even state-of-the-art stance detection methods, exemplified by GLAN, exhibit an accuracy of only 50.47%, highlighting the persistent challenges in conversational stance detection. Furthermore, our MT-CSD dataset serves as a valuable resource to catalyze advancements in cross-domain stance detection, where a classifier is adapted from a different yet related target. We believe that MT-CSD will contribute to advancing real-world applications of stance detection research. Our source code, data, and models are available at https://github.com/nfq729/MT-CSD.
Reinforcement learning from human feedback (RLHF) is a crucial technique in aligning large language models (LLMs) with human preferences, ensuring these LLMs behave in beneficial and comprehensible ways to users. However, a longstanding challenge in human alignment techniques based on reinforcement learning lies in their inherent complexity and difficulty in training. To address this challenge, we present a simple yet effective Contrastive Learning Framework for Human Alignment (CLHA) to align LLMs with human preferences directly. CLHA employs a novel rescoring strategy to evaluate the noise within the data by considering its inherent quality and dynamically adjusting the training process. Simultaneously, CLHA utilizes pairwise contrastive loss and adaptive supervised fine-tuning loss to adaptively modify the likelihood of generating responses, ensuring enhanced alignment with human preferences. Using advanced methods, CLHA surpasses other algorithms, showcasing superior performance in terms of reward model scores, automatic evaluations, and human assessments on the widely used “Helpful and Harmless” dataset.
Among the various pre-trained neural language models that are popular today, dropout is already an indispensable regularization technique. To solve the inconsistency between training and inference caused by the randomness of dropout, some studies use consistency training to regularize dropout at the output layer. In this paper, we propose a novel Layer-wise Regularized Dropout (LR-Drop), which is specially designed for Transformer-based Language models. Specifically, LR-Drop layer-wise regularizes each Transformer layer using the consistency training strategy. Each training sample passes through the two siamese sub-models sampled by dropout, and then LR-Drop forces the hidden states, multi-head attention matrices, and output distribution of the two siamese sub-models to be consistent. The proposed LR-Drop can be regarded as a “self-distillation” framework, in which each sub-model generated by dropout is the other’s “teacher” model and “student” model. Through extensive experiments on 8 natural language understanding datasets, 6 neural machine translation datasets, and 1 abstractive summarization dataset (a total of 15 datasets), we show that LR-Drop achieves superior performances, including state-of-the-art results.
Large language models (LLMs) have demonstrated impressive performance in various natural language processing (NLP) tasks. However, there is limited understanding of how well LLMs perform in specific domains (e.g, the intellectual property (IP) domain). In this paper, we contribute a new benchmark, the first Multilingual-oriented quiZ on Intellectual Property (MoZIP), for the evaluation of LLMs in the IP domain. The MoZIP benchmark includes three challenging tasks: IP multiple-choice quiz (IPQuiz), IP question answering (IPQA), and patent matching (PatentMatch). In addition, we also develop a new IP-oriented multilingual large language model (called MoZi), which is a BLOOMZ-based model that has been supervised fine-tuned with multilingual IP-related text data. We evaluate our proposed MoZi model and four well-known LLMs (i.e., BLOOMZ, BELLE, ChatGLM and ChatGPT) on the MoZIP benchmark. Experimental results demonstrate that MoZi outperforms BLOOMZ, BELLE and ChatGLM by a noticeable margin, while it had lower scores compared with ChatGPT. Notably, the performance of current LLMs on the MoZIP benchmark has much room for improvement, and even the most powerful ChatGPT does not reach the passing level. Our source code, data, and models are available at https://github.com/AI-for-Science/MoZi.
Task-oriented dialogue (TOD) systems facilitate users in executing various activities via multi-turn dialogues, but Large Language Models (LLMs) often struggle to comprehend these intricate contexts. In this study, we propose a novel “Self-Explanation” prompting strategy to enhance the comprehension abilities of LLMs in multi-turn dialogues. This task-agnostic approach requires the model to analyze each dialogue utterance before task execution, thereby improving performance across various dialogue-centric tasks. Experimental results from six benchmark datasets confirm that our method consistently outperforms other zero-shot prompts and matches or exceeds the efficacy of few-shot prompts, demonstrating its potential as a powerful tool in enhancing LLMs’ comprehension in complex dialogue tasks.
In this paper, we introduce an innovative pre-training framework TP-Link, which aims to improve context-dependent Text-to-SQL Parsing by leveraging Linking information. This enhancement is achieved through better representation of both natural language utterances and the database schema, ultimately facilitating more effective text-to-SQL conversations. We present two novel pre-training objectives: (i) utterance linking prediction (ULP) task that models intricate syntactic relationships among natural language utterances in context-dependent text-to-SQL scenarios, and (ii) schema linking prediction (SLP) task that focuses on capturing fine-grained schema linking relationships between the utterances and the database schema. Extensive experiments demonstrate that our proposed TP-Link achieves state-of-the-art performance on two leading downstream benchmarks (i.e., SParC and CoSQL).
Contemporary practices in instruction tuning often hinge on enlarging data scaling without a clear strategy for ensuring data quality, inadvertently introducing noise that may compromise model performance. To address this challenge, we introduce Nuggets, a novel and efficient methodology that leverages one-shot learning to discern and select high-quality instruction data from extensive datasets. Nuggets assesses the potential of individual instruction examples to act as effective one-shot learning instances, thereby identifying those that can significantly improve performance across diverse tasks. Nuggets utilizes a scoring system based on the impact of candidate examples on the perplexity of a diverse anchor set, facilitating the selection of the most advantageous data for instruction tuning. Through rigorous evaluations on two benchmarks, namely MT-Bench and Alpaca-Eval, our study illustrates that instruction tuning with the top 1% of examples curated by Nuggets substantially outperforms conventional methods employing the entire dataset.
Argumentation mining (AM) aims to detect the arguments and their inherent relations from argumentative textual compositions. Generally, AM comprises three key challenging subtasks, including argument component type classification (ACTC), argumentative relation identification (ARI), and argumentative relation type classification (ARTC). Prior methods are afflicted by a sequential feature decoding paradigm, wherein they initially address the features of argumentation components (ACs) for the task of ACTC. Then, these features are amalgamated in pairs to tackle the task of ARI. Finally, the AC pairs and ascertained pertinent relations are employed for ARTC. However, the explicit and comprehensive inter-relationship among the three subtasks is neglected. In this paper, we propose a novel method PITA for PromptIng Task interAction to model the inter-relationships among the three subtasks within a generative framework. Specifically, we employ a dynamic prompt template to indicate all ACs and AC pairs in the three subtasks. Then, from a multi-relational perspective, we construct an undirected heterogeneous graph to capture the various relationships within and between ACs and AC pairs. We apply the Relational Graph Convolutional Network (RGCN) on the graph and inject the task interaction information into the soft prompts with continuous representations. PITA jointly decodes all ACs and AC pairs using the prompt template with task interaction information, which thus explicitly and comprehensively harmonizes the information propagation across the three subtasks. Extensive experiments show PITA achieves state-of-the-art performances on two AM benchmarks.
With the advancement of large language models (LLMs) and the expansion of their context windows, existing long-context benchmarks fall short in effectively evaluating the models’ comprehension and reasoning abilities in extended texts. Moreover, conventional benchmarks relying on F1 metrics often inaccurately score responses: they may undervalue correct answers that differ from the reference responses and overvalue incorrect ones that resemble the reference texts. In response to these limitations, we introduce Marathon, a novel evaluation benchmark that adopts a multiple-choice question format. It is specifically designed to overcome the constraints of previous benchmarks and provide a rapid, precise, and unbiased appraisal of the long-context comprehension skills of large language models. We conducted comprehensive evaluations on the Marathon benchmark with a range of state-of-the-art LLMs and assessed the effectiveness of various optimization strategies tailored for long-context generation. We anticipate that the Marathon benchmark and its associated leaderboard will enable a more precise and equitable evaluation of LLMs’ capabilities in understanding and reasoning over extended contexts.
Recent advancements in Large Language Models (LLMs) have showcased their remarkable capabilities in text understanding and generation. However, even stronger LLMs are susceptible to acquiring erroneous or obsolete information from the training corpus. Direct secondary fine-tuning with data containing new knowledge may be ineffective in updating knowledge due to the conflict between old and new knowledge. In this paper, we propose a new paradigm for fine-tuning called F-Learning (Forgetting before Learning), which employs parametric arithmetic to facilitate the forgetting of old knowledge and learning of new knowledge. Experimental results on two publicly available datasets demonstrate that our proposed F-Learning can obviously improve the knowledge updating performance of both full fine-tuning and LoRA fine-tuning, simultaneously outperforming the existing baselines in most cases. Moreover, we have also discovered that forgetting old knowledge by subtracting the parameters of LoRA can yield a similar effect to subtracting the parameters of full fine-tuning, and occasionally even surpass it significantly.
The capability gap between open-source and closed-source large language models (LLMs) remains a challenge in text-to-SQL tasks. In this paper, we introduce a synthetic data approach that combines data produced by larger, more powerful models (strong models) with error information data generated by smaller, not well-aligned models (weak models). The method not only enhances the domain generalization of text-to-SQL models but also explores the potential of error data supervision through preference learning. Furthermore, we employ the synthetic data approach for instruction tuning on open-source LLMs, resulting SENSE, a specialized text-to-SQL model. The effectiveness of SENSE is demonstrated through state-of-the-art results on the SPIDER and BIRD benchmarks, bridging the performance gap between open-source models and methods prompted by closed-source models.
Long-context modeling capabilities are important for large language models (LLMs) in various applications. However, directly training LLMs with long context windows is insufficient to enhance this capability since some training samples do not exhibit strong semantic dependencies across long contexts.In this study, we propose a data mining framework ProLong that can assign each training sample with a long dependency score, which can be used to rank and filter samples that are more advantageous for enhancing long-context modeling abilities in LLM training. Specifically, we first use delta perplexity scores to measure the Dependency Strength between text segments in a given document. Then, we refine this metric based on the Dependency Distance of these segments to incorporate spatial relationships across long contexts. Final results are calibrated with a Dependency Specificity metric to prevent trivial dependencies introduced by repetitive patterns. Moreover, a random sampling approach is proposed to optimize the computational efficiency of ProLong. Comprehensive experiments on multiple benchmarks indicate that ProLong effectively identifies documents that carry long dependencies, and LLMs trained on these documents exhibit significantly enhanced long-context modeling capabilities.
Large Language Models (LLMs) exhibit substantial capabilities yet encounter challenges including hallucination, outdated knowledge, and untraceable reasoning processes. Retrieval-augmented generation (RAG) has emerged as a promising solution, integrating knowledge from external databases to mitigate these challenges. However, inappropriate retrieved passages can potentially hinder the LLMs’ capacity to generate comprehensive and high-quality responses. Prior RAG studies on the robustness of retrieval noises often confine themselves to a limited set of noise types, deviating from real-world retrieval environments and limiting practical applicability. In this study, we initially investigate retrieval noises and categorize them into three distinct types, reflecting real-world environments. We analyze the impact of these various retrieval noises on the robustness of LLMs. Subsequently, we propose a novel RAG approach known as Retrieval-augmented Adaptive Adversarial Training (RAAT). RAAT leverages adaptive adversarial training to dynamically adjust the model’s training process in response to retrieval noises. Concurrently, it employs multi-task learning to ensure the model’s capacity to internally recognize noisy contexts. Extensive experiments demonstrate that the LLaMA-2 7B model trained using RAAT exhibits significant improvements in F1 and EM scores under diverse noise conditions. For reproducibility, we will release our code and data upon acceptance.
Despite the advancements in in-context learning (ICL) for large language models (LLMs), current research centers on specific prompt engineering, such as demonstration selection, with the expectation that a single iteration of demonstrations processing can generalize effectively to a given test sample. However, this perspective overlooks the potential benefits derived from multiple iterations involving demonstrations, a practice aligning more closely with the iterative decision-making process exhibited by humans, who often learn through analogy. In this study, we introduce a novel two-stage framework to boost ICL in LLMs. Specifically, our framework delineates the ICL process into two distinct stages: Deep-Thinking and test stages. The Deep-Thinking stage incorporates a unique attention mechanism, i.e., iterative enhanced attention, which enables multiple rounds of information accumulation. This mechanism operates by manipulating the Key-Value matrices without training, fostering enhanced understanding capabilities in LLMs by thinking demonstrations multiple times. We evaluated Deep-Thinking across a range of benchmarks and LLMs, showing its superior performance over vanilla ICL methods and its effectiveness in challenging tasks where demonstration selection is infeasible.
Data-to-text (D2T) generation aims to transform structured data into natural language text. Data-to-text pre-training has proved to be powerful in enhancing D2T generation and yields impressive performance. However, previous pre-training methods either oversimplified structured data into a sequence without considering input structures or designed training objectives tailored for a specific data structure (e.g., table or knowledge graph). In this paper, we unify different types of structured data (i.e., table, key-value data, knowledge graph) into the graph format and cast different D2T generation tasks as graph-to-text generation. To effectively exploit the structural information of the input graph, we propose a structure-enhanced pre-training method for D2T generation by designing a structure-enhanced Transformer. Concretely, we devise a position matrix for the Transformer, encoding relative positional information of connected nodes in the input graph. In addition, we propose a new attention matrix to incorporate graph structures into the original Transformer by taking the available explicit connectivity structure into account. Extensive experiments on six benchmark datasets show the effectiveness of our model. Our source codes are available at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/unid2t.
In this article, we introduce a new method for analyzing and summarizing posts from r/SuicideWatch on Reddit, overcoming the limitations of current techniques in processing complex mental health discussions online. Existing methods often struggle to accurately identify and contextualize subtle expressions of mental health problems, leading to inadequate support and intervention strategies. Our approach combines the open-source Large Language Model (LLM), fine-tuned with health-oriented knowledge, to effectively process Reddit posts. We also design prompts that focus on suicide-related statements, extracting key statements, and generating concise summaries that capture the core aspects of the discussions. The preliminary results indicate that our method improves the understanding of online suicide-related posts compared to existing methodologies.
Recently, speech-text pre-training methods have shown remarkable success in many speech and natural language processing tasks. However, most previous pre-trained models are usually tailored for one or two specific tasks, but fail to conquer a wide range of speech-text tasks. In addition, existing speech-text pre-training methods fail to explore the contextual information within a dialogue to enrich utterance representations. In this paper, we propose Speech-text Pre-training for spoken dialog understanding with ExpliCiT cRoss-Modal Alignment (SPECTRA), which is the first-ever speech-text dialog pre-training model. Concretely, to consider the temporality of speech modality, we design a novel temporal position prediction task to capture the speech-text alignment. This pre-training task aims to predict the start and end time of each textual word in the corresponding speech waveform. In addition, to learn the characteristics of spoken dialogs, we generalize a response selection task from textual dialog pre-training to speech-text dialog pre-training scenarios. Experimental results on four different downstream speech-text tasks demonstrate the superiority of SPECTRA in learning speech-text alignment and multi-turn dialog context.
Perceiving multi-modal information and fulfilling dialogues with humans is a long-term goal of artificial intelligence. Pre-training is commonly regarded as an effective approach for multi-modal dialogue. However, due to the limited availability of multi-modal dialogue data, there is still scarce research on multi-modal dialogue pre-training. Yet another intriguing challenge emerges from the encompassing nature of multi-modal dialogue, which involves various modalities and tasks. Moreover, new forms of tasks may arise at unpredictable points in the future. Hence, it is essential for designed multi-modal dialogue models to possess sufficient flexibility to adapt to such scenarios. This paper proposes PaCE, a unified, structured, compositional multi-modal dialogue pre-training framework. It utilizes a combination of several fundamental experts to accommodate multiple dialogue-related tasks and can be pre-trained using limited dialogue and extensive non-dialogue multi-modal data. Furthermore, we propose a progressive training method where old experts from the past can assist new experts, facilitating the expansion of their capabilities. Experimental results demonstrate that PaCE achieves state-of-the-art results on eight multi-modal dialog benchmarks.
In this paper, we investigate how to improve tagging-based Grammatical Error Correction models. We address two issues of current tagging-based approaches, label imbalance issue, and tagging entanglement issue. Then we propose to down-weight the loss of well-classified labels using Focal Loss and decouple the error detection layer from the label tagging layer through an extra self-attention-based matching module. Experiments over three latest Chinese Grammatical Error Correction datasets show that our proposed methods are effective. We further analyze choices of hyper-parameters for Focal Loss and inference tweaking.
For pretrained language models such as Google’s BERT, recent research designs several input-adaptive inference mechanisms to improve the efficiency on cloud and edge devices. In this paper, we reveal a new attack surface on input-adaptive multi-exit BERT, where the adversary imperceptibly modifies the input texts to drastically increase the average inference cost. Our proposed slow-down attack called SlowBERT integrates a new rank-and-substitute adversarial text generation algorithm to efficiently search for the perturbation which maximally delays the exiting time. With no direct access to the model internals, we further devise a time-based approximation algorithm to infer the exit position as the loss oracle. Our extensive evaluation on two popular instances of multi-exit BERT for GLUE classification tasks validates the effectiveness of SlowBERT. In the worst case, SlowBERT increases the inference cost by 4.57×, which would strongly hurt the service quality of multi-exit BERT in practice, e.g., increasing the real-time cloud services’ response times for online users.
Millions of users are active on social media. To allow users to better showcase themselves and network with others, we explore the auto-generation of social media self-introduction, a short sentence outlining a user’s personal interests. While most prior work profiling users with tags (e.g., ages), we investigate sentence-level self-introductions to provide a more natural and engaging way for users to know each other. Here we exploit a user’s tweeting history to generate their self-introduction. The task is non-trivial because the history content may be lengthy, noisy, and exhibit various personal interests. To address this challenge, we propose a novel unified topic-guided encoder-decoder (UTGED) framework; it models latent topics to reflect salient user interest, whose topic mixture then guides encoding a user’s history and topic words control decoding their self-introduction. For experiments, we collect a large-scale Twitter dataset, and extensive results show the superiority of our UTGED to the advanced encoder-decoder models without topic modeling.
Argument pair extraction (APE) aims to extract interactive argument pairs from two passages within a discussion. The key challenge of APE is to effectively capture the complex context-aware interactive relations of arguments between the two passages. In this paper, we elicit relational semantic knowledge from large-scale pre-trained language models (PLMs) via a probing technique. The induced sentence-level relational probing graph can help capture rich explicit interactive relations between argument pairs effectively. Since the relevance score of a sentence pair within a passage is generally larger than that of the sentence pair from different passages, each sentence would prefer to propagate information within the same passage and under-explore the interactive relations between two passages. To tackle this issue, we propose a graph decomposition method to decompose the probing graph into four sub-graphs from intra- and inter-passage perspectives, where the intra-passage graphs can help detect argument spans within each passage and the inter-passage graphs can help identify the argument pairs between the review and rebuttal passages. Experimental results on two benchmark datasets show that our method achieves substantial improvements over strong baselines for APE.
Emotion recognition in conversations (ERC) aims to detect the emotion of utterances in conversations. Existing efforts generally focus on modeling context- and knowledge-sensitive dependencies. However, it is observed that the emotions of many utterances can be correctly detected without context or external knowledge. In such cases, blindly leveraging the context and external knowledge may impede model training. Based on this, we propose a novel framework based on contrastive learning (CL), called CKCL (including the contrastive learning scenarios among Context and Knowledge), to distinguish the above utterances for better vector representations. The CKCL framework defines context- and knowledge-independent utterances, as the positive sample, whose predicted results are unchanged even masking context and knowledge representations, otherwise, the negative sample. This can obtain a latent feature reflecting the impact degree of context and external knowledge on predicted results, thus effectively denoising irrelevant context and knowledge during training. Experimental results on four datasets show the performance of CKCL-based models is significantly boosted and outperforms state-of-the-art methods.
Recently, aspect-based sentiment analysis (ABSA) models have yielded promising results. However, they are susceptible to learning spurious correlations between certain words of the input text and output labels while modeling the sentiment feature of the aspect. This spurious correlation will potentially undermine the performance of ABSA models. One direct solution for this problem is to make the model see and learn an explanation of sentiment expression rather than certain words. Motivated by this, we exploit explanations for the sentiment polarity of each aspect from large language models (LLMs) to reduce spurious correlations in ABSA. First, we formulate a prompt template that wraps the sentence, an aspect, and the sentiment label. This template is utilized to prompt LLMs to generate an appropriate explanation that states the sentiment cause. Then, we propose two straightforward yet effective methods to leverage the explanation for preventing the learning of spurious correlations. We conducted extensive comparative experiments on five datasets by integrating them with some representative ABSA models. Results show that our methods can achieve performance gains and enhance the performance and generalization ability of ABSA models.
Thanks in part to the availability of copious annotated resources for some entity categories, existing studies have achieved superior performance in multimodal named entity recognition (MNER). However, in the real-world scenario, it is infeasible to enumerate all entity categories in advance. Therefore, in this paper, we formulate a new few-shot multimodal named entity recognition (FewMNER) task, which aims to effectively locate and identify named entities for a text-image pair only using a small number of labeled examples. Further, we explore the merit of in-context learning (ICL) and propose a novel framework to deal with FewMNER, where three points are taken into account: i.e., converting visual modality, selecting useful examples, and designing an effective task demonstration. Specifically, we first employ an image caption model to convert images into textual descriptions, enabling large language models to absorb information from visual modality. Then, we use the ranking of the sum of similarity rankings from both text and image modalities to select k-nearest examples, which form a demonstration context. Finally, we utilize the MNER definition and the meaning of each entity category as effective instruction. Extensive experimental results demonstrate that our framework outperforms baselines under several few-shot settings.
Unintended dataset biases typically exist in existing Emotion Recognition in Conversations (ERC) datasets, including label bias, where models favor the majority class due to imbalanced training data, as well as the speaker and neutral word bias, where models make unfair predictions because of excessive correlations between specific neutral words or speakers and classes. However, previous studies in ERC generally focus on capturing context-sensitive and speaker-sensitive dependencies, ignoring the unintended dataset biases of data, which hampers the generalization and fairness in ERC. To address this issue, we propose a Training-Free Debiasing framework (TFD) that operates during prediction without additional training. To ensure compatibility with various ERC models, it does not balance data or modify the model structure. Instead, TFD extracts biases from the model by generating counterfactual utterances and contexts and mitigates them using simple yet empirically robust element-wise subtraction operations. Extensive experiments on three public datasets demonstrate that TFD effectively improves generalization ability and fairness across different ERC models.
Identifying users’ stances regarding specific targets/topics is a significant route to learning public opinion from social media platforms. Most existing studies of stance detection strive to learn stance information about specific targets from the context, in order to determine the user’s stance on the target. However, in real-world scenarios, we usually have a certain understanding of a target when we express our stance on it. In this paper, we investigate stance detection from a novel perspective, where the background knowledge of the targets is taken into account for better stance detection. To be specific, we categorize background knowledge into two categories: episodic knowledge and discourse knowledge, and propose a novel Knowledge-Augmented Stance Detection (KASD) framework. For episodic knowledge, we devise a heuristic retrieval algorithm based on the topic to retrieve the Wikipedia documents relevant to the sample. Further, we construct a prompt for ChatGPT to filter the Wikipedia documents to derive episodic knowledge. For discourse knowledge, we construct a prompt for ChatGPT to paraphrase the hashtags, references, etc., in the sample, thereby injecting discourse knowledge into the sample. Experimental results on four benchmark datasets demonstrate that our KASD achieves state-of-the-art performance in in-target and zero-shot stance detection.
Aspect Sentiment Triplet Extraction (ASTE) aims to extract the aspect terms along with the corresponding opinion terms and the expressed sentiments in the review, which is an important task in sentiment analysis. Previous research efforts generally address the ASTE task in an end-to-end fashion through the table-filling formalization, in which the triplets are represented by a two-dimensional (2D) table of word-pair relations. Under this formalization, a term-level relation is decomposed into multiple independent word-level relations, which leads to relation inconsistency and boundary insensitivity in the face of multi-word aspect terms and opinion terms. To overcome these issues, we propose Boundary-Driven Table-Filling (BDTF), which represents each triplet as a relation region in the 2D table and transforms the ASTE task into detection and classification of relation regions. We also notice that the quality of the table representation greatly affects the performance of BDTF. Therefore, we develop an effective relation representation learning approach to learn the table representation, which can fully exploit both word-to-word interactions and relation-to-relation interactions. Experiments on several public benchmarks show that the proposed approach achieves state-of-the-art performances.
This paper investigates the sentiment analysis task from a novel perspective by incorporating sentiment knowledge and eye movement into a graph architecture, aiming to draw the eye movement-based sentiment relationships for learning the sentiment expression of the context. To be specific, we first explore a linguistic probing eye movement paradigm to extract eye movement features based on the close relationship between linguistic features and the early and late processes of human reading behavior. Furthermore, to derive eye movement features with sentiment concepts, we devise a novel weighting strategy to integrate sentiment scores extracted from affective commonsense knowledge into eye movement features, called sentiment-eye movement weights. Then, the sentiment-eye movement weights are exploited to build the sentiment-eye movement guided graph (SEMGraph) model, so as to model the intricate sentiment relationships in the context. Experimental results on two sentiment analysis datasets with eye movement signals and three sentiment analysis datasets without eye movement signals show that the proposed SEMGraph achieves state-of-the-art performance, and can also be directly generalized to those sentiment analysis datasets without eye movement signals.
Argument mining (AM) is a challenging task as it requires recognizing the complex argumentation structures involving multiple subtasks.To handle all subtasks of AM in an end-to-end fashion, previous works generally transform AM into a dependency parsing task.However, such methods largely require complex pre- and post-processing to realize the task transformation.In this paper, we investigate the end-to-end AM task from a novel perspective by proposing a generative framework, in which the expected outputs of AM are framed as a simple target sequence. Then, we employ a pre-trained sequence-to-sequence language model with a constrained pointer mechanism (CPM) to model the clues for all the subtasks of AM in the light of the target sequence. Furthermore, we devise a reconstructed positional encoding (RPE) to alleviate the order biases induced by the autoregressive generation paradigm.Experimental results show that our proposed framework achieves new state-of-the-art performance on two AM benchmarks.
Pre-training methods with contrastive learning objectives have shown remarkable success in dialog understanding tasks. However, current contrastive learning solely considers the self-augmented dialog samples as positive samples and treats all other dialog samples as negative ones, which enforces dissimilar representations even for dialogs that are semantically related. In this paper, we propose SPACE-2, a tree-structured pre-trained conversation model, which learns dialog representations from limited labeled dialogs and large-scale unlabeled dialog corpora via semi-supervised contrastive pre-training. Concretely, we first define a general semantic tree structure (STS) to unify the inconsistent annotation schema across different dialog datasets, so that the rich structural information stored in all labeled data can be exploited. Then we propose a novel multi-view score function to increase the relevance of all possible dialogs that share similar STSs and only push away other completely different dialogs during supervised contrastive pre-training. To fully exploit unlabeled dialogs, a basic self-supervised contrastive loss is also added to refine the learned representations. Experiments show that our method can achieve new state-of-the-art results on the DialoGLUE benchmark consisting of seven datasets and four popular dialog understanding tasks.
Deep neural models have become the mainstream in answer selection, yielding state-of-the-art performance. However, these models tend to rely on spurious correlations between prediction labels and input features, which in general suffer from robustness and generalization. In this paper, we propose a novel Spurious Correlation reduction method to improve the robustness of the neural ANswer selection models (SCAN) from the sample and feature perspectives by removing the feature dependencies and language biases in answer selection. First, from the sample perspective, we propose a feature decorrelation module by learning a weight for each instance at the training phase to remove the feature dependencies and reduce the spurious correlations without prior knowledge of such correlations. Second, from the feature perspective, we propose a feature debiasing module with contrastive learning to alleviate the negative language biases (spurious correlations) and further improve the robustness of the AS models. Experimental results on three benchmark datasets show that SCAN achieves substantial improvements over strong baselines. For reproducibility, we will release our code and data upon the publication of this paper.
Few-shot relation classification aims to classify the relation type between two given entities in a sentence by training with a few labeled instances for each relation. However, most of existing models fail to distinguish multiple relations that co-exist in one sentence. This paper presents a novel dependency-aware prototype learning (DAPL) method for few-shot relation classification. Concretely, we utilize dependency trees and shortest dependency paths (SDP) as structural information to complement the contextualized representations of input sentences by using the dependency-aware embedding as attention inputs to learn attentive sentence representations. In addition, we introduce a gate controlled update mechanism to update the dependency-aware representations according to the output of each network layer. Extensive experiments on the FewRel dataset show that DAPL achieves substantially better performance than strong baselines. For reproducibility, we will release our code and data upon the publication of this paper at https://github.com/publicstaticvo/DAPL.
This paper aims to improve the performance of text-to-SQL parsing by exploring the intrinsic uncertainties in the neural network based approaches (called SUN). From the data uncertainty perspective, it is indisputable that a single SQL can be learned from multiple semantically-equivalent questions. Different from previous methods that are limited to one-to-one mapping, we propose a data uncertainty constraint to explore the underlying complementary semantic information among multiple semantically-equivalent questions (many-to-one) and learn the robust feature representations with reduced spurious associations. In this way, we can reduce the sensitivity of the learned representations and improve the robustness of the parser. From the model uncertainty perspective, there is often structural information (dependence) among the weights of neural networks. To improve the generalizability and stability of neural text-to-SQL parsers, we propose a model uncertainty constraint to refine the query representations by enforcing the output representations of different perturbed encoding networks to be consistent with each other. Extensive experiments on five benchmark datasets demonstrate that our method significantly outperforms strong competitors and achieves new state-of-the-art results.
The existing research efforts in Multimodal Sentiment Analysis (MSA) have focused on developing the expressive ability of neural networks to fuse information from different modalities. However, these approaches lack a mechanism to understand the complex relations within and across different modalities, since some sentiments may be scattered in different modalities. To this end, in this paper, we propose a novel hierarchical graph contrastive learning (HGraph-CL) framework for MSA, aiming to explore the intricate relations of intra- and inter-modal representations for sentiment extraction. Specifically, regarding the intra-modal level, we build a unimodal graph for each modality representation to account for the modality-specific sentiment implications. Based on it, a graph contrastive learning strategy is adopted to explore the potential relations based on unimodal graph augmentations. Furthermore, we construct a multimodal graph of each instance based on the unimodal graphs to grasp the sentiment relations between different modalities. Then, in light of the multimodal augmentation graphs, a graph contrastive learning strategy over the inter-modal level is proposed to ulteriorly seek the possible graph structures for precisely learning sentiment relations. This essentially allows the framework to understand the appropriate graph structures for learning intricate relations among different modalities. Experimental results on two benchmark datasets show that the proposed framework outperforms the state-of-the-art baselines in MSA.
Zero-shot stance detection (ZSSD) aims to detect the stance for an unseen target during the inference stage. In this paper, we propose a joint contrastive learning (JointCL) framework, which consists of stance contrastive learning and target-aware prototypical graph contrastive learning. Specifically, a stance contrastive learning strategy is employed to better generalize stance features for unseen targets. Further, we build a prototypical graph for each instance to learn the target-based representation, in which the prototypes are deployed as a bridge to share the graph structures between the known targets and the unseen ones. Then a novel target-aware prototypical graph contrastive learning strategy is devised to generalize the reasoning ability of target-based stance representations to the unseen targets. Extensive experiments on three benchmark datasets show that the proposed approach achieves state-of-the-art performance in the ZSSD task.
With the increasing popularity of posting multimodal messages online, many recent studies have been carried out utilizing both textual and visual information for multi-modal sarcasm detection. In this paper, we investigate multi-modal sarcasm detection from a novel perspective by constructing a cross-modal graph for each instance to explicitly draw the ironic relations between textual and visual modalities. Specifically, we first detect the objects paired with descriptions of the image modality, enabling the learning of important visual information. Then, the descriptions of the objects are served as a bridge to determine the importance of the association between the objects of image modality and the contextual words of text modality, so as to build a cross-modal graph for each multi-modal instance. Furthermore, we devise a cross-modal graph convolutional network to make sense of the incongruity relations between modalities for multi-modal sarcasm detection. Extensive experimental results and in-depth analysis show that our model achieves state-of-the-art performance in multi-modal sarcasm detection.
In this paper, we propose a novel SQL guided pre-training framework STAR for context-dependent text-to-SQL parsing, which leverages contextual information to enrich natural language (NL) utterance and table schema representations for text-to-SQL conversations. Concretely, we propose two novel pre-training objectives which respectively explore the context-dependent interactions of NL utterances and SQL queries within each text-to-SQL conversation: (i) schema state tracking (SST) objective that tracks and explores the schema states of context-dependent SQL queries in the form of schema-states by predicting and updating the value of each schema slot during interaction; (ii) utterance dependency tracking (UDT) objective that employs weighted contrastive learning to pull together two semantically similar NL utterances and push away the representations of semantically dissimilar NL utterances within each conversation. In addition, we construct a high-quality large-scale context-dependent text-to-SQL conversation corpus to pre-train STAR. Extensive experiments show that STAR achieves new state-of-the-art performance on two downstream benchmarks (SParC and CoSQL), significantly outperforming previous pre-training methods and ranking first on the leaderboard. We believe the release of the constructed corpus, codebase and pre-trained STAR checkpoints would push forward the research in this area.
In this paper, we propose a self-distillation framework with meta learning (MetaSD) for knowledge graph completion with dynamic pruning, which aims to learn compressed graph embeddings and tackle the long-tail samples. Specifically, we first propose a dynamic pruning technique to obtain a small pruned model from a large source model, where the pruning mask of the pruned model could be updated adaptively per epoch after the model weights are updated. The pruned model is supposed to be more sensitive to difficult-to-memorize samples (e.g., long-tail samples) than the source model. Then, we propose a one-step meta self-distillation method for distilling comprehensive knowledge from the source model to the pruned model, where the two models co-evolve in a dynamic manner during training. In particular, we exploit the performance of the pruned model, which is trained alongside the source model in one iteration, to improve the source model’s knowledge transfer ability for the next iteration via meta learning. Extensive experiments show that MetaSD achieves competitive performance compared to strong baselines, while being 10x smaller than baselines.
Extracting fine-grained structural information between argumentation component (AC) pairs is essential for argumentation relation classification (ARC). However, most previous studies attempt to model the relationship between AC pairs using AC level similarity or semantically relevant features. They ignore the complex interaction between AC pairs and cannot effectively reason the argumentation relation deeply.Therefore, in this paper, we propose a novel dual prior graph neural network (DPGNN) to jointly explore the probing knowledge derived from pre-trained language models (PLMs) and the syntactical information for comprehensively modeling the relationship between AC pairs. Specifically, we construct a probing graph by using probing knowledge derived from PLMs to recognize and align the relational information within and across the argumentation components. In addition, we propose a mutual dependency graph for the AC pair to reason the fine-grained syntactic structural information, in which the syntactical correlation between words is set by the dependency information within AC and mutual attention mechanism across ACs. The knowledge learned from the probing graph and the dependency graph are combined to comprehensively capture the aligned relationships of AC pairs for improving the results of ARC. Experimental results on three public datasets show that DPGNN outperforms the state-of-the-art baselines by a noticeable margin.
In this paper, we investigate the Aspect Category Sentiment Analysis (ACSA) task from a novel perspective by exploring a Beta Distribution guided aspect-aware graph construction based on external knowledge. That is, we are no longer entangled about how to laboriously search the sentiment clues for coarse-grained aspects from the context, but how to preferably find the words highly related to the aspects in the context and determine their importance based on the public knowledge base. In this way, the contextual sentiment clues can be explicitly tracked in ACSA for the aspects in the light of these aspect-related words. To be specific, we first regard each aspect as a pivot to derive aspect-aware words that are highly related to the aspect from external affective commonsense knowledge. Then, we employ Beta Distribution to educe the aspect-aware weight, which reflects the importance to the aspect, for each aspect-aware word. Afterward, the aspect-aware words are served as the substitutes of the coarse-grained aspect to construct graphs for leveraging the aspect-related contextual sentiment dependencies in ACSA. Experiments on 6 benchmark datasets show that our approach significantly outperforms the state-of-the-art baseline methods.
Aspect term extraction aims to extract aspect terms from a review sentence that users have expressed opinions on. One of the remaining challenges for aspect term extraction resides in the lack of sufficient annotated data. While self-training is potentially an effective method to address this issue, the pseudo-labels it yields on unlabeled data could induce noise. In this paper, we use two means to alleviate the noise in the pseudo-labels. One is that inspired by the curriculum learning, we refine the conventional self-training to progressive self-training. Specifically, the base model infers pseudo-labels on a progressive subset at each iteration, where samples in the subset become harder and more numerous as the iteration proceeds. The other is that we use a discriminator to filter the noisy pseudo-labels. Experimental results on four SemEval datasets show that our model significantly outperforms the previous baselines and achieves state-of-the-art performance.
Auxiliary information from multiple sources has been demonstrated to be effective in zero-shot fine-grained entity typing (ZFET). However, there lacks a comprehensive understanding about how to make better use of the existing information sources and how they affect the performance of ZFET. In this paper, we empirically study three kinds of auxiliary information: context consistency, type hierarchy and background knowledge (e.g., prototypes and descriptions) of types, and propose a multi-source fusion model (MSF) targeting these sources. The performance obtains up to 11.42% and 22.84% absolute gains over state-of-the-art baselines on BBN and Wiki respectively with regard to macro F1 scores. More importantly, we further discuss the characteristics, merits and demerits of each information source and provide an intuitive understanding of the complementarity among them.
Argument pair extraction (APE) aims to extract interactive argument pairs from two passages of a discussion. Previous work studied this task in the context of peer review and rebuttal, and decomposed it into a sequence labeling task and a sentence relation classification task. However, despite the promising performance, such an approach obtains the argument pairs implicitly by the two decomposed tasks, lacking explicitly modeling of the argument-level interactions between argument pairs. In this paper, we tackle the APE task by a mutual guidance framework, which could utilize the information of an argument in one passage to guide the identification of arguments that can form pairs with it in another passage. In this manner, two passages can mutually guide each other in the process of APE. Furthermore, we propose an inter-sentence relation graph to effectively model the inter-relations between two sentences and thus facilitates the extraction of argument pairs. Our proposed method can better represent the holistic argument-level semantics and thus explicitly capture the complex correlations between argument pairs. Experimental results show that our approach significantly outperforms the current state-of-the-art model.
Most existing neural network based task-oriented dialog systems follow encoder-decoder paradigm, where the decoder purely depends on the source texts to generate a sequence of words, usually suffering from instability and poor readability. Inspired by the traditional template-based generation approaches, we propose a template-guided hybrid pointer network for knowledge-based task-oriented dialog systems, which retrieves several potentially relevant answers from a pre-constructed domain-specific conversational repository as guidance answers, and incorporates the guidance answers into both the encoding and decoding processes. Specifically, we design a memory pointer network model with a gating mechanism to fully exploit the semantic correlation between the retrieved answers and the ground-truth response. We evaluate our model on four widely used task-oriented datasets, including one simulated and three manually created datasets. The experimental results demonstrate that the proposed model achieves significantly better performance than the state-of-the-art methods over different automatic evaluation metrics.
As more and more product reviews are posted in both text and images, Multimodal Review Analysis (MRA) becomes an attractive research topic. Among the existing review analysis tasks, helpfulness prediction on review text has become predominant due to its importance for e-commerce platforms and online shops, i.e. helping customers quickly acquire useful product information. This paper proposes a new task Multimodal Review Helpfulness Prediction (MRHP) aiming to analyze the review helpfulness from text and visual modalities. Meanwhile, a novel Multi-perspective Coherent Reasoning method (MCR) is proposed to solve the MRHP task, which conducts joint reasoning over texts and images from both the product and the review, and aggregates the signals to predict the review helpfulness. Concretely, we first propose a product-review coherent reasoning module to measure the intra- and inter-modal coherence between the target product and the review. In addition, we also devise an intra-review coherent reasoning module to identify the coherence between the text content and images of the review, which is a piece of strong evidence for review helpfulness prediction. To evaluate the effectiveness of MCR, we present two newly collected multimodal review datasets as benchmark evaluation resources for the MRHP task. Experimental results show that our MCR method can lead to a performance increase of up to 8.5% as compared to the best performing text-only model. The source code and datasets can be obtained from https://github.com/jhliu17/MCR.
This ability to learn consecutive tasks without forgetting how to perform previously trained problems is essential for developing an online dialogue system. This paper proposes an effective continual learning method for the task-oriented dialogue system with iterative network pruning, expanding, and masking (TPEM), which preserves performance on previously encountered tasks while accelerating learning progress on subsequent tasks. Specifically, TPEM (i) leverages network pruning to keep the knowledge for old tasks, (ii) adopts network expanding to create free weights for new tasks, and (iii) introduces task-specific network masking to alleviate the negative impact of fixed weights of old tasks on new tasks. We conduct extensive experiments on seven different tasks from three benchmark datasets and show empirically that TPEM leads to significantly improved results over the strong competitors.
Pre-trained language models (e.g., BERT) have achieved significant success in various natural language processing (NLP) tasks. However, high storage and computational costs obstruct pre-trained language models to be effectively deployed on resource-constrained devices. In this paper, we propose a novel BERT distillation method based on many-to-many layer mapping, which allows each intermediate student layer to learn from any intermediate teacher layers. In this way, our model can learn from different teacher layers adaptively for different NLP tasks. In addition, we leverage Earth Mover’s Distance (EMD) to compute the minimum cumulative cost that must be paid to transform knowledge from teacher network to student network. EMD enables effective matching for the many-to-many layer mapping. Furthermore, we propose a cost attention mechanism to learn the layer weights used in EMD automatically, which is supposed to further improve the model’s performance and accelerate convergence time. Extensive experiments on GLUE benchmark demonstrate that our model achieves competitive performance compared to strong competitors in terms of both accuracy and model compression
The challenge of both achieving task completion by querying the knowledge base and generating human-like responses for task-oriented dialogue systems is attracting increasing research attention. In this paper, we propose a “Two-Teacher One-Student” learning framework (TTOS) for task-oriented dialogue, with the goal of retrieving accurate KB entities and generating human-like responses simultaneously. TTOS amalgamates knowledge from two teacher networks that together provide comprehensive guidance to build a high-quality task-oriented dialogue system (student network). Each teacher network is trained via reinforcement learning with a goal-specific reward, which can be viewed as an expert towards the goal and transfers the professional characteristic to the student network. Instead of adopting the classic student-teacher learning of forcing the output of a student network to exactly mimic the soft targets produced by the teacher networks, we introduce two discriminators as in generative adversarial network (GAN) to transfer knowledge from two teachers to the student. The usage of discriminators relaxes the rigid coupling between the student and teachers. Extensive experiments on two benchmark datasets (i.e., CamRest and In-Car Assistant) demonstrate that TTOS significantly outperforms baseline methods.
Stance detection is an important task, which aims to classify the attitude of an opinionated text towards a given target. Remarkable success has been achieved when sufficient labeled training data is available. However, annotating sufficient data is labor-intensive, which establishes significant barriers for generalizing the stance classifier to the data with new targets. In this paper, we proposed a Semantic-Emotion Knowledge Transferring (SEKT) model for cross-target stance detection, which uses the external knowledge (semantic and emotion lexicons) as a bridge to enable knowledge transfer across different targets. Specifically, a semantic-emotion heterogeneous graph is constructed from external semantic and emotion lexicons, which is then fed into a graph convolutional network to learn multi-hop semantic connections between words and emotion tags. Then, the learned semantic-emotion graph representation, which serves as prior knowledge bridging the gap between the source and target domains, is fully integrated into the bidirectional long short-term memory (BiLSTM) stance classifier by adding a novel knowledge-aware memory unit to the BiLSTM cell. Extensive experiments on a large real-world dataset demonstrate the superiority of SEKT against the state-of-the-art baseline methods.
Emotion-cause pair extraction aims to extract all potential pairs of emotions and corresponding causes from unannotated emotion text. Most existing methods are pipelined framework, which identifies emotions and extracts causes separately, leading to a drawback of error propagation. Towards this issue, we propose a transition-based model to transform the task into a procedure of parsing-like directed graph construction. The proposed model incrementally generates the directed graph with labeled edges based on a sequence of actions, from which we can recognize emotions with the corresponding causes simultaneously, thereby optimizing separate subtasks jointly and maximizing mutual benefits of tasks interdependently. Experimental results show that our approach achieves the best performance, outperforming the state-of-the-art methods by 6.71% (p<0.01) in F1 measure.
Cross-lingual Machine Reading Comprehension (CLMRC) remains a challenging problem due to the lack of large-scale annotated datasets in low-source languages, such as Arabic, Hindi, and Vietnamese. Many previous approaches use translation data by translating from a rich-source language, such as English, to low-source languages as auxiliary supervision. However, how to effectively leverage translation data and reduce the impact of noise introduced by translation remains onerous. In this paper, we tackle this challenge and enhance the cross-lingual transferring performance by a novel augmentation approach named Language Branch Machine Reading Comprehension (LBMRC). A language branch is a group of passages in one single language paired with questions in all target languages. We train multiple machine reading comprehension (MRC) models proficient in individual language based on LBMRC. Then, we devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages. Combining the LBMRC and multilingual distillation can be more robust to the data noises, therefore, improving the model’s cross-lingual ability. Meanwhile, the produced single multilingual model can apply to all target languages, which saves the cost of training, inference, and maintenance for multiple models. Extensive experiments on two CLMRC benchmarks clearly show the effectiveness of our proposed method.
Image paragraph captioning (IPC) aims to generate a fine-grained paragraph to describe the visual content of an image. Significant progress has been made by deep neural networks, in which the attention mechanism plays an essential role. However, conventional attention mechanisms tend to ignore the past alignment information, which often results in problems of repetitive captioning and incomplete captioning. In this paper, we propose an Interactive key-value Memory- augmented Attention model for image Paragraph captioning (IMAP) to keep track of the attention history (salient objects coverage information) along with the update-chain of the decoder state and therefore avoid generating repetitive or incomplete image descriptions. In addition, we employ an adaptive attention mechanism to realize adaptive alignment from image regions to caption words, where an image region can be mapped to an arbitrary number of caption words while a caption word can also attend to an arbitrary number of image regions. Extensive experiments on a benchmark dataset (i.e., Stanford) demonstrate the effectiveness of our IMAP model.
Existing end-to-end task-oriented dialog systems struggle to dynamically model long dialog context for interactions and effectively incorporate knowledge base (KB) information into dialog generation. To conquer these limitations, we propose a Dual Dynamic Memory Network (DDMN) for multi-turn dialog generation, which maintains two core components: dialog memory manager and KB memory manager. The dialog memory manager dynamically expands the dialog memory turn by turn and keeps track of dialog history with an updating mechanism, which encourages the model to filter irrelevant dialog history and memorize important newly coming information. The KB memory manager shares the structural KB triples throughout the whole conversation, and dynamically extracts KB information with a memory pointer at each turn. Experimental results on three benchmark datasets demonstrate that DDMN significantly outperforms the strong baselines in terms of both automatic evaluation and human evaluation. Our code is available at https://github.com/siat-nlp/DDMN.
Obstacles hindering the development of capsule networks for challenging NLP applications include poor scalability to large output spaces and less reliable routing processes. In this paper, we introduce: (i) an agreement score to evaluate the performance of routing processes at instance-level; (ii) an adaptive optimizer to enhance the reliability of routing; (iii) capsule compression and partial routing to improve the scalability of capsule networks. We validate our approach on two NLP tasks, namely: multi-label text classification and question answering. Experimental results show that our approach considerably improves over strong competitors on both tasks. In addition, we gain the best results in low-resource settings with few training instances.
In this work, we re-examine the problem of extractive text summarization for long documents. We observe that the process of extracting summarization of human can be divided into two stages: 1) a rough reading stage to look for sketched information, and 2) a subsequent careful reading stage to select key sentences to form the summary. By simulating such a two-stage process, we propose a novel approach for extractive summarization. We formulate the problem as a contextual-bandit problem and solve it with policy gradient. We adopt a convolutional neural network to encode gist of paragraphs for rough reading, and a decision making policy with an adapted termination mechanism for careful reading. Experiments on the CNN and DailyMail datasets show that our proposed method can provide high-quality summaries with varied length, and significantly outperform the state-of-the-art extractive methods in terms of ROUGE metrics.
Emotion cause analysis, which aims to identify the reasons behind emotions, is a key topic in sentiment analysis. A variety of neural network models have been proposed recently, however, these previous models mostly focus on the learning architecture with local textual information, ignoring the discourse and prior knowledge, which play crucial roles in human text comprehension. In this paper, we propose a new method to extract emotion cause with a hierarchical neural model and knowledge-based regularizations, which aims to incorporate discourse context information and restrain the parameters by sentiment lexicon and common knowledge. The experimental results demonstrate that our proposed method achieves the state-of-the-art performance on two public datasets in different languages (Chinese and English), outperforming a number of competitive baselines by at least 2.08% in F-measure.
Aspect-based sentiment analysis (ABSA) has attracted increasing attention recently due to its broad applications. In existing ABSA datasets, most sentences contain only one aspect or multiple aspects with the same sentiment polarity, which makes ABSA task degenerate to sentence-level sentiment analysis. In this paper, we present a new large-scale Multi-Aspect Multi-Sentiment (MAMS) dataset, in which each sentence contains at least two different aspects with different sentiment polarities. The release of this dataset would push forward the research in this field. In addition, we propose simple yet effective CapsNet and CapsNet-BERT models which combine the strengths of recent NLP advances. Experiments on our new dataset show that the proposed model significantly outperforms the state-of-the-art baseline methods
Distantly supervised relation extraction greatly reduces human efforts in extracting relational facts from unstructured texts. However, it suffers from noisy labeling problem, which can degrade its performance. Meanwhile, the useful information expressed in knowledge graph is still underutilized in the state-of-the-art methods for distantly supervised relation extraction. In the light of these challenges, we propose CORD, a novelCOopeRativeDenoising framework, which consists two base networks leveraging text corpus and knowledge graph respectively, and a cooperative module involving their mutual learning by the adaptive bi-directional knowledge distillation and dynamic ensemble with noisy-varying instances. Experimental results on a real-world dataset demonstrate that the proposed method reduces the noisy labels and achieves substantial improvement over the state-of-the-art methods.
Review text has been widely studied in traditional tasks such as sentiment analysis and aspect extraction. However, to date, no work is towards the abstractive review summarization that is essential for business organizations and individual consumers to make informed decisions. This work takes the lead to study the aspect/sentiment-aware abstractive review summarization by exploring multi-factor attentions. Specifically, we propose an interactive attention mechanism to interactively learns the representations of context words, sentiment words and aspect words within the reviews, acted as an encoder. The learned sentiment and aspect representations are incorporated into the decoder to generate aspect/sentiment-aware review summaries via an attention fusion network. In addition, the abstractive summarizer is jointly trained with the text categorization task, which helps learn a category-specific text encoder, locating salient aspect information and exploring the variations of style and wording of content with respect to different text categories. The experimental results on a real-life dataset demonstrate that our model achieves impressive results compared to other strong competitors.
Answer selection is an important but challenging task. Significant progresses have been made in domains where a large amount of labeled training data is available. However, obtaining rich annotated data is a time-consuming and expensive process, creating a substantial barrier for applying answer selection models to a new domain which has limited labeled data. In this paper, we propose Knowledge-aware Attentive Network (KAN), a transfer learning framework for cross-domain answer selection, which uses the knowledge base as a bridge to enable knowledge transfer from the source domain to the target domains. Specifically, we design a knowledge module to integrate the knowledge-based representational learning into answer selection models. The learned knowledge-based representations are shared by source and target domains, which not only leverages large amounts of cross-domain data, but also benefits from a regularization effect that leads to more general representations to help tasks in new domains. To verify the effectiveness of our model, we use SQuAD-T dataset as the source domain and three other datasets (i.e., Yahoo QA, TREC QA and InsuranceQA) as the target domains. The experimental results demonstrate that KAN has remarkable applicability and generality, and consistently outperforms the strong competitors by a noticeable margin for cross-domain answer selection.
In this study, we explore capsule networks with dynamic routing for text classification. We propose three strategies to stabilize the dynamic routing process to alleviate the disturbance of some noise capsules which may contain “background” information or have not been successfully trained. A series of experiments are conducted with capsule networks on six text classification benchmarks. Capsule networks achieve state of the art on 4 out of 6 datasets, which shows the effectiveness of capsule networks for text classification. We additionally show that capsule networks exhibit significant improvement when transfer single-label to multi-label text classification over strong baseline methods. To the best of our knowledge, this is the first work that capsule networks have been empirically investigated for text modeling.
Deep learning approaches for sentiment classification do not fully exploit sentiment linguistic knowledge. In this paper, we propose a Multi-sentiment-resource Enhanced Attention Network (MEAN) to alleviate the problem by integrating three kinds of sentiment linguistic knowledge (e.g., sentiment lexicon, negation words, intensity words) into the deep neural network via attention mechanisms. By using various types of sentiment resources, MEAN utilizes sentiment-relevant information from different representation sub-spaces, which makes it more effective to capture the overall semantics of the sentiment, negation and intensity words for sentiment prediction. The experimental results demonstrate that MEAN has robust superiority over strong competitors.
We study the problem of identifying the topics and sentiments and tracking their shifts from social media texts in different geographical regions during emergencies and disasters. We propose a location-based dynamic sentiment-topic model (LDST) which can jointly model topic, sentiment, time and Geolocation information. The experimental results demonstrate that LDST performs very well at discovering topics and sentiments from social media and tracking their shifts in different geographical regions during emergencies and disasters. We will release the data and source code after this work is published.