Ming Zhang


2022

pdf bib
Pathway2Text: Dataset and Method for Biomedical Pathway Description Generation
Junwei Yang | Zequn Liu | Ming Zhang | Sheng Wang
Findings of the Association for Computational Linguistics: NAACL 2022

Biomedical pathways have been extensively used to characterize the mechanism of complex diseases. One essential step in biomedical pathway analysis is to curate the description of a pathway based on its graph structure and node features. Neural text generation could be a plausible technique to circumvent the tedious manual curation. In this paper, we propose a new dataset Pathway2Text, which contains 2,367 pairs of biomedical pathways and textual descriptions. All pathway graphs are experimentally derived or manually curated. All textual descriptions are written by domain experts. We form this problem as a Graph2Text task and propose a novel graph-based text generation approach kNN-Graph2Text, which explicitly exploited descriptions of similar graphs to generate new descriptions. We observed substantial improvement of our method on both Graph2Text and the reverse task of Text2Graph. We further illustrated how our dataset can be used as a novel benchmark for biomedical named entity recognition. Collectively, we envision our method will become an important benchmark for evaluating Graph2Text methods and advance biomedical research for complex diseases.

pdf bib
Focus-Driven Contrastive Learning for Medical Question Summarization
Ming Zhang | Shuai Dou | Ziyang Wang | Yunfang Wu
Proceedings of the 29th International Conference on Computational Linguistics

Automatic medical question summarization can significantly help the system to understand consumer health questions and retrieve correct answers. The Seq2Seq model based on maximum likelihood estimation (MLE) has been applied in this task, which faces two general problems: the model can not capture well question focus and and the traditional MLE strategy lacks the ability to understand sentence-level semantics. To alleviate these problems, we propose a novel question focus-driven contrastive learning framework (QFCL). Specially, we propose an easy and effective approach to generate hard negative samples based on the question focus, and exploit contrastive learning at both encoder and decoder to obtain better sentence level representations. On three medical benchmark datasets, our proposed model achieves new state-of-the-art results, and obtains a performance gain of 5.33, 12.85 and 3.81 points over the baseline BART model on three datasets respectively. Further human judgement and detailed analysis prove that our QFCL model learns better sentence representations with the ability to distinguish different sentence meanings, and generates high-quality summaries by capturing question focus.

2021

pdf bib
Graphine: A Dataset for Graph-aware Terminology Definition Generation
Zequn Liu | Shukai Wang | Yiyang Gu | Ruiyi Zhang | Ming Zhang | Sheng Wang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Precisely defining the terminology is the first step in scientific communication. Developing neural text generation models for definition generation can circumvent the labor-intensity curation, further accelerating scientific discovery. Unfortunately, the lack of large-scale terminology definition dataset hinders the process toward definition generation. In this paper, we present a large-scale terminology definition dataset Graphine covering 2,010,648 terminology definition pairs, spanning 227 biomedical subdisciplines. Terminologies in each subdiscipline further form a directed acyclic graph, opening up new avenues for developing graph-aware text generation models. We then proposed a novel graph-aware definition generation model Graphex that integrates transformer with graph neural network. Our model outperforms existing text generation models by exploiting the graph structure of terminologies. We further demonstrated how Graphine can be used to evaluate pretrained language models, compare graph representation learning methods and predict sentence granularity. We envision Graphine to be a unique resource for definition generation and many other NLP tasks in biomedicine.

pdf bib
UniKER: A Unified Framework for Combining Embedding and Definite Horn Rule Reasoning for Knowledge Graph Inference
Kewei Cheng | Ziqing Yang | Ming Zhang | Yizhou Sun
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Knowledge graph inference has been studied extensively due to its wide applications. It has been addressed by two lines of research, i.e., the more traditional logical rule reasoning and the more recent knowledge graph embedding (KGE). Several attempts have been made to combine KGE and logical rules for better knowledge graph inference. Unfortunately, they either simply treat logical rules as additional constraints into KGE loss or use probabilistic model to approximate the exact logical inference (i.e., MAX-SAT). Even worse, both approaches need to sample ground rules to tackle the scalability issue, as the total number of ground rules is intractable in practice, making them less effective in handling logical rules. In this paper, we propose a novel framework UniKER to address these challenges by restricting logical rules to be definite Horn rules, which can fully exploit the knowledge in logical rules and enable the mutual enhancement of logical rule-based reasoning and KGE in an extremely efficient way. Extensive experiments have demonstrated that our approach is superior to existing state-of-the-art algorithms in terms of both efficiency and effectiveness.

pdf bib
Expanding the JHU Bible Corpus for Machine Translation of the Indigenous Languages of North America
Garrett Nicolai | Edith Coates | Ming Zhang | Miikka Silfverberg
Proceedings of the 4th Workshop on the Use of Computational Methods in the Study of Endangered Languages Volume 1 (Papers)

pdf bib
Generate & Rank: A Multi-task Framework for Math Word Problems
Jianhao Shen | Yichun Yin | Lin Li | Lifeng Shang | Xin Jiang | Ming Zhang | Qun Liu
Findings of the Association for Computational Linguistics: EMNLP 2021

Math word problem (MWP) is a challenging and critical task in natural language processing. Many recent studies formalize MWP as a generation task and have adopted sequence-to-sequence models to transform problem descriptions to mathematical expressions. However, mathematical expressions are prone to minor mistakes while the generation objective does not explicitly handle such mistakes. To address this limitation, we devise a new ranking task for MWP and propose Generate & Rank, a multi-task framework based on a generative pre-trained language model. By joint training with generation and ranking, the model learns from its own mistakes and is able to distinguish between correct and incorrect expressions. Meanwhile, we perform tree-based disturbance specially designed for MWP and an online update to boost the ranker. We demonstrate the effectiveness of our proposed method on the benchmark and the results show that our method consistently outperforms baselines in all datasets. Particularly, in the classical Math23k, our method is 7% (78.4% to 85.4%) higher than the state-of-the-art. Code could be found at https://github.com/huawei-noah/noah-research.

2020

pdf bib
Learning to Customize Model Structures for Few-shot Dialogue Generation Tasks
Yiping Song | Zequn Liu | Wei Bi | Rui Yan | Ming Zhang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Training the generative models with minimal corpus is one of the critical challenges for building open-domain dialogue systems. Existing methods tend to use the meta-learning framework which pre-trains the parameters on all non-target tasks then fine-tunes on the target task. However, fine-tuning distinguishes tasks from the parameter perspective but ignores the model-structure perspective, resulting in similar dialogue models for different tasks. In this paper, we propose an algorithm that can customize a unique dialogue model for each task in the few-shot setting. In our approach, each dialogue model consists of a shared module, a gating module, and a private module. The first two modules are shared among all the tasks, while the third one will differentiate into different network structures to better capture the characteristics of the corresponding task. The extensive experiments on two datasets show that our method outperforms all the baselines in terms of task consistency, response quality, and diversity.

pdf bib
PoD: Positional Dependency-Based Word Embedding for Aspect Term Extraction
Yichun Yin | Chenguang Wang | Ming Zhang
Proceedings of the 28th International Conference on Computational Linguistics

Dependency context-based word embedding jointly learns the representations of word and dependency context, and has been proved effective in aspect term extraction. In this paper, we design the positional dependency-based word embedding (PoD) which considers both dependency context and positional context for aspect term extraction. Specifically, the positional context is modeled via relative position encoding. Besides, we enhance the dependency context by integrating more lexical information (e.g., POS tags) along dependency paths. Experiments on SemEval 2014/2015/2016 datasets show that our approach outperforms other embedding methods in aspect term extraction.

2017

pdf bib
NNEMBs at SemEval-2017 Task 4: Neural Twitter Sentiment Classification: a Simple Ensemble Method with Different Embeddings
Yichun Yin | Yangqiu Song | Ming Zhang
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

Recently, neural twitter sentiment classification has become one of state-of-thearts, which relies less feature engineering work compared with traditional methods. In this paper, we propose a simple and effective ensemble method to further boost the performances of neural models. We collect several word embedding sets which are publicly released (often are learned on different corpus) or constructed by running Skip-gram on released large-scale corpus. We make an assumption that different word embeddings cover different words and encode different semantic knowledge, thus using them together can improve the generalizations and performances of neural models. In the SemEval 2017, our method ranks 1st in Accuracy, 5th in AverageR. Meanwhile, the additional comparisons demonstrate the superiority of our model over these ones based on only one word embedding set. We release our code for the method duplicability.

pdf bib
Diversifying Neural Conversation Model with Maximal Marginal Relevance
Yiping Song | Zhiliang Tian | Dongyan Zhao | Ming Zhang | Rui Yan
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Neural conversation systems, typically using sequence-to-sequence (seq2seq) models, are showing promising progress recently. However, traditional seq2seq suffer from a severe weakness: during beam search decoding, they tend to rank universal replies at the top of the candidate list, resulting in the lack of diversity among candidate replies. Maximum Marginal Relevance (MMR) is a ranking algorithm that has been widely used for subset selection. In this paper, we propose the MMR-BS decoding method, which incorporates MMR into the beam search (BS) process of seq2seq. The MMR-BS method improves the diversity of generated replies without sacrificing their high relevance with the user-issued query. Experiments show that our proposed model achieves the best performance among other comparison methods.

pdf bib
Syntax Aware LSTM model for Semantic Role Labeling
Feng Qian | Lei Sha | Baobao Chang | Lu-chen Liu | Ming Zhang
Proceedings of the 2nd Workshop on Structured Prediction for Natural Language Processing

In Semantic Role Labeling (SRL) task, the tree structured dependency relation is rich in syntax information, but it is not well handled by existing models. In this paper, we propose Syntax Aware Long Short Time Memory (SA-LSTM). The structure of SA-LSTM changes according to dependency structure of each sentence, so that SA-LSTM can model the whole tree structure of dependency relation in an architecture engineering way. Experiments demonstrate that on Chinese Proposition Bank (CPB) 1.0, SA-LSTM improves F1 by 2.06% than ordinary bi-LSTM with feature engineered dependency relation information, and gives state-of-the-art F1 of 79.92%. On English CoNLL 2005 dataset, SA-LSTM brings improvement (2.1%) to bi-LSTM model and also brings slight improvement (0.3%) when added to the state-of-the-art model.

pdf bib
Document-Level Multi-Aspect Sentiment Classification as Machine Comprehension
Yichun Yin | Yangqiu Song | Ming Zhang
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Document-level multi-aspect sentiment classification is an important task for customer relation management. In this paper, we model the task as a machine comprehension problem where pseudo question-answer pairs are constructed by a small number of aspect-related keywords and aspect ratings. A hierarchical iterative attention model is introduced to build aspectspecific representations by frequent and repeated interactions between documents and aspect questions. We adopt a hierarchical architecture to represent both word level and sentence level information, and use the attention operations for aspect questions and documents alternatively with the multiple hop mechanism. Experimental results on the TripAdvisor and BeerAdvocate datasets show that our model outperforms classical baselines. We will release our code and data for the method replicability.

2016

pdf bib
Chinese Couplet Generation with Neural Network Structures
Rui Yan | Cheng-Te Li | Xiaohua Hu | Ming Zhang
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2013

pdf bib
Paraphrasing Adaptation for Web Search Ranking
Chenguang Wang | Nan Duan | Ming Zhou | Ming Zhang
Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

2011

pdf bib
A Fast and Accurate Method for Approximate String Search
Ziqi Wang | Gu Xu | Hang Li | Ming Zhang
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies