Minghao Wu


pdf bib
A Paradigm Shift: The Future of Machine Translation Lies with Large Language Models
Chenyang Lyu | Zefeng Du | Jitao Xu | Yitao Duan | Minghao Wu | Teresa Lynn | Alham Fikri Aji | Derek F. Wong | Longyue Wang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Machine Translation (MT) has greatly advanced over the years due to the developments in deep neural networks. However, the emergence of Large Language Models (LLMs) like GPT-4 and ChatGPT is introducing a new phase in the MT domain. In this context, we believe that the future of MT is intricately tied to the capabilities of LLMs. These models not only offer vast linguistic understandings but also bring innovative methodologies, such as prompt-based techniques, that have the potential to further elevate MT. In this paper, we provide an overview of the significant enhancements in MT that are influenced by LLMs and advocate for their pivotal role in upcoming MT research and implementations. We highlight several new MT directions, emphasizing the benefits of LLMs in scenarios such as Long-Document Translation, Stylized Translation, and Interactive Translation. Additionally, we address the important concern of privacy in LLM-driven MT and suggest essential privacy-preserving strategies. By showcasing practical instances, we aim to demonstrate the advantages that LLMs offer, particularly in tasks like translating extended documents. We conclude by emphasizing the critical role of LLMs in guiding the future evolution of MT and offer a roadmap for future exploration in the sector.

pdf bib
Importance-Aware Data Augmentation for Document-Level Neural Machine Translation
Minghao Wu | Yufei Wang | George Foster | Lizhen Qu | Gholamreza Haffari
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Document-level neural machine translation (DocNMT) aims to generate translations that are both coherent and cohesive, in contrast to its sentence-level counterpart. However, due to its longer input length and limited availability of training data, DocNMT often faces the challenge of data sparsity. To overcome this issue, we propose a novel Importance-Aware Data Augmentation (IADA) algorithm for DocNMT that augments the training data based on token importance information estimated by the norm of hidden states and training gradients. We conduct comprehensive experiments on three widely-used DocNMT benchmarks. Our empirical results show that our proposed IADA outperforms strong DocNMT baselines as well as several data augmentation approaches, with statistical significance on both sentence-level and document-level BLEU.

pdf bib
LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions
Minghao Wu | Abdul Waheed | Chiyu Zhang | Muhammad Abdul-Mageed | Alham Aji
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) with instruction fine-tuning demonstrate superior generative capabilities. However, these models are resource-intensive. To alleviate this issue, we explore distilling knowledge from instruction-tuned LLMs into much smaller ones. While other similar works have been done, they are often conducted on a limited set of (usually still large) models and are not accompanied by proper evaluations. To this end, we carefully develop a large set of 2.58M instructions based on both existing and newly-generated instructions. In addition to being sizable, we design our instructions to cover a broad set of topics to ensure diversity. Extensive analysis of our instruction dataset confirms its diversity, and we generate responses for these instructions using gpt-3.5-turbo. Leveraging these instructions, we fine-tune a diverse herd of models, collectively referred to as LaMini-LM, which includes models from both the encoder-decoder and decoder-only families, with varying sizes. We evaluate the performance of our models using automatic metrics on 15 different natural language processing (NLP) benchmarks, as well as through human assessment. We also assess the model for hallucination and toxicity, and for the former, we introduce a new benchmark dataset for hallucination-inducing QA. The results demonstrate that our proposed LaMini-LM models are comparable to strong baselines while being much smaller in size.


pdf bib
Document Flattening: Beyond Concatenating Context for Document-Level Neural Machine Translation
Minghao Wu | George Foster | Lizhen Qu | Gholamreza Haffari
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Existing work in document-level neural machine translation commonly concatenates several consecutive sentences as a pseudo-document, and then learns inter-sentential dependencies. This strategy limits the model’s ability to leverage information from distant context. We overcome this limitation with a novel Document Flattening (DocFlat) technique that integrates Flat-Batch Attention (FBA) and Neural Context Gate (NCG) into Transformer model to utilizes information beyond the pseudo-document boundaries. FBA allows the model to attend to all the positions in the batch and model the relationships between positions explicitly and NCG identifies the useful information from the distant context. We conduct comprehensive experiments and analyses on three benchmark datasets for English-German translation, and validate the effectiveness of two variants of DocFlat. Empirical results show that our approach outperforms strong baselines with statistical significance on BLEU, COMET and accuracy on the contrastive test set. The analyses highlight that DocFlat is highly effective in capturing the long-range information.


pdf bib
Universal Conditional Masked Language Pre-training for Neural Machine Translation
Pengfei Li | Liangyou Li | Meng Zhang | Minghao Wu | Qun Liu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Pre-trained sequence-to-sequence models have significantly improved Neural Machine Translation (NMT). Different from prior works where pre-trained models usually adopt an unidirectional decoder, this paper demonstrates that pre-training a sequence-to-sequence model but with a bidirectional decoder can produce notable performance gains for both Autoregressive and Non-autoregressive NMT. Specifically, we propose CeMAT, a conditional masked language model pre-trained on large-scale bilingual and monolingual corpora in many languages. We also introduce two simple but effective methods to enhance the CeMAT, aligned code-switching & masking and dynamic dual-masking. We conduct extensive experiments and show that our CeMAT can achieve significant performance improvement for all scenarios from low- to extremely high-resource languages, i.e., up to +14.4 BLEU on low resource and +7.9 BLEU improvements on average for Autoregressive NMT. For Non-autoregressive NMT, we demonstrate it can also produce consistent performance gains, i.e., up to +5.3 BLEU. To the best of our knowledge, this is the first work to pre-train a unified model for fine-tuning on both NMT tasks. Code, data, and pre-trained models are available at https://github.com/huawei-noah/Pretrained-Language-Model/CeMAT


pdf bib
Uncertainty-Aware Balancing for Multilingual and Multi-Domain Neural Machine Translation Training
Minghao Wu | Yitong Li | Meng Zhang | Liangyou Li | Gholamreza Haffari | Qun Liu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Learning multilingual and multi-domain translation model is challenging as the heterogeneous and imbalanced data make the model converge inconsistently over different corpora in real world. One common practice is to adjust the share of each corpus in the training, so that the learning process is balanced and low-resource cases can benefit from the high resource ones. However, automatic balancing methods usually depend on the intra- and inter-dataset characteristics, which is usually agnostic or requires human priors. In this work, we propose an approach, MultiUAT, that dynamically adjusts the training data usage based on the model’s uncertainty on a small set of trusted clean data for multi-corpus machine translation. We experiments with two classes of uncertainty measures on multilingual (16 languages with 4 settings) and multi-domain settings (4 for in-domain and 2 for out-of-domain on English-German translation) and demonstrate our approach MultiUAT substantially outperforms its baselines, including both static and dynamic strategies. We analyze the cross-domain transfer and show the deficiency of static and similarity based methods.

pdf bib
NoahNMT at WMT 2021: Dual Transfer for Very Low Resource Supervised Machine Translation
Meng Zhang | Minghao Wu | Pengfei Li | Liangyou Li | Qun Liu
Proceedings of the Sixth Conference on Machine Translation

This paper describes the NoahNMT system submitted to the WMT 2021 shared task of Very Low Resource Supervised Machine Translation. The system is a standard Transformer model equipped with our recent technique of dual transfer. It also employs widely used techniques that are known to be helpful for neural machine translation, including iterative back-translation, selected finetuning, and ensemble. The final submission achieves the top BLEU for three translation directions.


pdf bib
Evaluating the Utility of Hand-crafted Features in Sequence Labelling
Minghao Wu | Fei Liu | Trevor Cohn
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Conventional wisdom is that hand-crafted features are redundant for deep learning models, as they already learn adequate representations of text automatically from corpora. In this work, we test this claim by proposing a new method for exploiting handcrafted features as part of a novel hybrid learning approach, incorporating a feature auto-encoder loss component. We evaluate on the task of named entity recognition (NER), where we show that including manual features for part-of-speech, word shapes and gazetteers can improve the performance of a neural CRF model. We obtain a F 1 of 91.89 for the CoNLL-2003 English shared task, which significantly outperforms a collection of highly competitive baseline models. We also present an ablation study showing the importance of auto-encoding, over using features as either inputs or outputs alone, and moreover, show including the autoencoder components reduces training requirements to 60%, while retaining the same predictive accuracy.