Mingi Shin


2024

pdf bib
Detecting Offensive Language in an Open Chatbot Platform
Hyeonho Song | Jisu Hong | Chani Jung | Hyojin Chin | Mingi Shin | Yubin Choi | Junghoi Choi | Meeyoung Cha
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

While detecting offensive language in online spaces remains an important societal issue, there is still a significant gap in existing research and practial datasets specific to chatbots. Furthermore, many of the current efforts by service providers to automatically filter offensive language are vulnerable to users’ deliberate text manipulation tactics, such as misspelling words. In this study, we analyze offensive language patterns in real logs of 6,254,261 chat utterance pairs from the commercial chat service Simsimi, which cover a variety of conversation topics. Based on the observed patterns, we introduce a novel offensive language detection method—a contrastive learning model that embeds chat content with a random masking strategy. We show that this model outperforms existing models in detecting offensive language in open-domain chat conversations while also demonstrating robustness against users’ deliberate text manipulation tactics when using offensive language. We release our curated chatbot dataset to foster research on offensive language detection in open-domain conversations and share lessons learned from mitigating offensive language on a live platform.

2023

pdf bib
Unified Neural Topic Model via Contrastive Learning and Term Weighting
Sungwon Han | Mingi Shin | Sungkyu Park | Changwook Jung | Meeyoung Cha
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Two types of topic modeling predominate: generative methods that employ probabilistic latent models and clustering methods that identify semantically coherent groups. This paper newly presents UTopic (Unified neural Topic model via contrastive learning and term weighting) that combines the advantages of these two types. UTopic uses contrastive learning and term weighting to learn knowledge from a pretrained language model and discover influential terms from semantically coherent clusters. Experiments show that the generated topics have a high-quality topic-word distribution in terms of topic coherence, outperforming existing baselines across multiple topic coherence measures. We demonstrate how our model can be used as an add-on to existing topic models and improve their performance.

2020

pdf bib
A Risk Communication Event Detection Model via Contrastive Learning
Mingi Shin | Sungwon Han | Sungkyu Park | Meeyoung Cha
Proceedings of the 3rd NLP4IF Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda

This paper presents a time-topic cohesive model describing the communication patterns on the coronavirus pandemic from three Asian countries. The strength of our model is two-fold. First, it detects contextualized events based on topical and temporal information via contrastive learning. Second, it can be applied to multiple languages, enabling a comparison of risk communication across cultures. We present a case study and discuss future implications of the proposed model.