Mingkun Xu
2024
LAMBDA: Large Language Model-Based Data Augmentation for Multi-Modal Machine Translation
Yusong Wang
|
Dongyuan Li
|
Jialun Shen
|
Yicheng Xu
|
Mingkun Xu
|
Kotaro Funakoshi
|
Manabu Okumura
Findings of the Association for Computational Linguistics: EMNLP 2024
Multi-modal machine translation (MMT) can reduce ambiguity and semantic distortion compared with traditional machine translation (MT) by utilizing auxiliary information such as images. However, current MMT methods face two primary challenges. The first is their underperformance compared to MT methods based on pre-trained models. The second is the inadequate exploitation and integration of the image modality within the model, primarily due to a lack of triplet training data. A mainstream approach is to introduce large amounts of parallel and monolingual data to train the text model and the visual model separately. However, incorporating extensive external data can result in data imbalance, which may introduce biases during training. Additionally, the collection and cleaning of such large datasets is labor-intensive. To overcome these challenges, we introduce a novel, low-cost, large language model-based data augmentation method called LAMBDA, which can enrich the original samples and expand the dataset without requiring external images and text. We propose a fine-grained image captioning module with a noise filter to hierarchically and accurately extract unexploited information from images. Additionally, we design two specific prompts to guide the GPT-3.5 model in generating enriched texts and the corresponding translations. The enriched samples contain diverse text and strong connections between text and images, leading to significant improvements for MMT baselines, with the highest being an increase of up to 3.83 BLEU score and 3.61 METEOR score.
Search
Fix data
Co-authors
- Kotaro Funakoshi 1
- Dongyuan Li 1
- Manabu Okumura 1
- Jialun Shen 1
- Yusong Wang 1
- show all...