Mingyang Cai


2024

pdf bib
Improving Implicit Discourse Relation Recognition with Semantics Confrontation
Mingyang Cai | Zhen Yang | Ping Jian
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Implicit Discourse Relation Recognition (IDRR), which infers discourse logical relations without explicit connectives, is one of the most challenging tasks in natural language processing (NLP). Recently, pre-trained language models (PLMs) have yielded impressive results across numerous NLP tasks, but their performance still remains unsatisfactory in IDRR. We argue that prior studies have not fully harnessed the potential of PLMs, thereby resulting in a mixture of logical semantics, which determine the logical relations between discourse arguments, and general semantics, which encapsulate the non-logical contextual aspects (detailed in Sec.1). Such a mixture would inevitably compromise the logic reasoning ability of PLMs. Therefore, we propose a novel method that trains the PLMs through two semantics enhancers to implicitly differentiate logical and general semantics, ultimately achieving logical semantics enhancement. Due to the characteristic of PLM in word representation learning, these two semantics enhancers will inherently confront with each other, facilitating an augmentation of logical semantics by disentangling them from general semantics. The experimental results on PDTB 2.0 dataset show that the confrontation approach exceeds our baseline by 3.81% F1 score, and the effectiveness of the semantics confrontation method is validated by comprehensive ablation experiments.