Mingye Gao


pdf bib
Cooperative Self-training of Machine Reading Comprehension
Hongyin Luo | Shang-Wen Li | Mingye Gao | Seunghak Yu | James Glass
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Pretrained language models have significantly improved the performance of downstream language understanding tasks, including extractive question answering, by providing high-quality contextualized word embeddings. However, training question answering models still requires large amounts of annotated data for specific domains. In this work, we propose a cooperative self-training framework, RGX, for automatically generating more non-trivial question-answer pairs to improve model performance. RGX is built upon a masked answer extraction task with an interactive learning environment containing an answer entity Recognizer, a question Generator, and an answer eXtractor. Given a passage with a masked entity, the generator generates a question around the entity, and the extractor is trained to extract the masked entity with the generated question and raw texts. The framework allows the training of question generation and answering models on any text corpora without annotation. We further leverage a self-training technique to improve the performance of both question generation and answer extraction models. Experiment results show that RGX outperforms the state-of-the-art (SOTA) pretrained language models and transfer learning approaches on standard question-answering benchmarks, and yields the new SOTA performance under given model size and transfer learning settings.


pdf bib
Mitigating Biases in Toxic Language Detection through Invariant Rationalization
Yung-Sung Chuang | Mingye Gao | Hongyin Luo | James Glass | Hung-yi Lee | Yun-Nung Chen | Shang-Wen Li
Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021)

Automatic detection of toxic language plays an essential role in protecting social media users, especially minority groups, from verbal abuse. However, biases toward some attributes, including gender, race, and dialect, exist in most training datasets for toxicity detection. The biases make the learned models unfair and can even exacerbate the marginalization of people. Considering that current debiasing methods for general natural language understanding tasks cannot effectively mitigate the biases in the toxicity detectors, we propose to use invariant rationalization (InvRat), a game-theoretic framework consisting of a rationale generator and a predictor, to rule out the spurious correlation of certain syntactic patterns (e.g., identity mentions, dialect) to toxicity labels. We empirically show that our method yields lower false positive rate in both lexical and dialectal attributes than previous debiasing methods.