Chemical representation learning has gained increasing interest due to the limited availability of supervised data in fields such as drug and materials design. This interest particularly extends to chemical language representation learning, which involves pre-training Transformers on SMILES sequences - textual descriptors of molecules. Despite its success in molecular property prediction, current practices often lead to overfitting and limited scalability due to early convergence. In this paper, we introduce a novel chemical language representation learning framework, called MolTRES, to address these issues. MolTRES incorporates generator-discriminator training, allowing the model to learn from more challenging examples that require structural understanding. In addition, we enrich molecular representations by transferring knowledge from scientific literature by integrating external materials embedding. Experimental results show that our model outperforms existing state-of-the-art models on popular molecular property prediction tasks.
In this paper, we introduce COCONUT to effectively guide the contextualization of structured commonsense knowledge based on largelanguage models. COCONUT employs a contextualized knowledge prompting scheme to gather high-quality contextualization examplesfrom a large language model. These examples are subsequently distilled into small language models to enhance their contextualization capability. Extensive evaluations show that COCONUT considerably improves commonsense reasoning performance across diverse benchmarks, models, and settings, exhibiting its flexibility and universality in generating contextualized commonsense knowledge. Notably,COCONUT consistently outperforms the state-of-the-art technique by an average of 5.8%.
Biases in the dataset often enable the model to achieve high performance on in-distribution data, while poorly performing on out-of-distribution data. To mitigate the detrimental effect of the bias on the networks, previous works have proposed debiasing methods that down-weight the biased examples identified by an auxiliary model, which is trained with explicit bias labels. However, finding a type of bias in datasets is a costly process. Therefore, recent studies have attempted to make the auxiliary model biased without the guidance (or annotation) of bias labels, by constraining the model’s training environment or the capability of the model itself. Despite the promising debiasing results of recent works, the multi-class learning objective, which has been naively used to train the auxiliary model, may harm the bias mitigation effect due to its regularization effect and competitive nature across classes. As an alternative, we propose a new debiasing framework that introduces binary classifiers between the auxiliary model and the main model, coined bias experts. Specifically, each bias expert is trained on a binary classification task derived from the multi-class classification task via the One-vs-Rest approach. Experimental results demonstrate that our proposed strategy improves the bias identification ability of the auxiliary model. Consequently, our debiased model consistently outperforms the state-of-the-art on various challenge datasets.
Computational inefficiency in transformers has been a long-standing challenge, hindering the deployment in resource-constrained or real-time applications. One promising approach to mitigate this limitation is to progressively remove less significant tokens, given that the sequence length strongly contributes to the inefficiency. However, this approach entails a potential risk of losing crucial information due to the irrevocable nature of token removal. In this paper, we introduce Leap-of-Thought (LoT), a novel token reduction approach that dynamically routes tokens within layers. Unlike previous work that irrevocably discards tokens, LoT enables tokens to ‘leap’ across layers. This ensures that all tokens remain accessible in subsequent layers while reducing the number of tokens processed within layers. We achieve this by pairing the transformer with dynamic token routers, which learn to selectively process tokens essential for the task. Evaluation results clearly show that LoT achieves a substantial improvement in computational efficiency. Specifically, LoT attains up to 25x faster inference time without a significant loss in accuracy
Pre-trained language models have achieved remarkable successes in natural language processing tasks, coming at the cost of increasing model size. To address this issue, knowledge distillation (KD) has been widely applied to compress language models. However, typical KD approaches for language models have overlooked the difficulty of training examples, suffering from incorrect teacher prediction transfer and sub-efficient training. In this paper, we propose a novel KD framework, Tutor-KD, which improves the distillation effectiveness by controlling the difficulty of training examples during pre-training. We introduce a tutor network that generates samples that are easy for the teacher but difficult for the student, with training on a carefully designed policy gradient method. Experimental results show that Tutor-KD significantly and consistently outperforms the state-of-the-art KD methods with variously sized student models on the GLUE benchmark, demonstrating that the tutor can effectively generate training examples for the student.
Self-supervised pre-training has achieved remarkable success in extensive natural language processing tasks. Masked language modeling (MLM) has been widely used for pre-training effective bidirectional representations but comes at a substantial training cost. In this paper, we propose a novel concept-based curriculum masking (CCM) method to efficiently pre-train a language model. CCM has two key differences from existing curriculum learning approaches to effectively reflect the nature of MLM. First, we introduce a novel curriculum that evaluates the MLM difficulty of each token based on a carefully-designed linguistic difficulty criterion. Second, we construct a curriculum that masks easy words and phrases first and gradually masks related ones to the previously masked ones based on a knowledge graph. Experimental results show that CCM significantly improves pre-training efficiency. Specifically, the model trained with CCM shows comparative performance with the original BERT on the General Language Understanding Evaluation benchmark at half of the training cost.
Commonsense inference poses a unique challenge to reason and generate the physical, social, and causal conditions of a given event. Existing approaches to commonsense inference utilize commonsense transformers, which are large-scale language models that learn commonsense knowledge graphs. However, they suffer from a lack of coverage and expressive diversity of the graphs, resulting in a degradation of the representation quality. In this paper, we focus on addressing missing relations in commonsense knowledge graphs, and propose a novel contrastive learning framework called SOLAR. Our framework contrasts sets of semantically similar and dissimilar events, learning richer inferential knowledge compared to existing approaches. Empirical results demonstrate the efficacy of SOLAR in commonsense inference of diverse commonsense knowledge graphs. Specifically, SOLAR outperforms the state-of-the-art commonsense transformer on commonsense inference with ConceptNet by 1.84% on average among 8 automatic evaluation metrics. In-depth analysis of SOLAR sheds light on the effects of the missing relations utilized in learning commonsense knowledge graphs.