Mingyu Li


2024

pdf bib
EconAgent: Large Language Model-Empowered Agents for Simulating Macroeconomic Activities
Nian Li | Chen Gao | Mingyu Li | Yong Li | Qingmin Liao
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The advent of artificial intelligence has led to a growing emphasis on data-driven modeling in macroeconomics, with agent-based modeling (ABM) emerging as a prominent bottom-up simulation paradigm. In ABM, agents (*e.g.*, households, firms) interact within a macroeconomic environment, collectively generating market dynamics. Existing agent modeling typically employs predetermined rules or learning-based neural networks for decision-making. However, customizing each agent presents significant challenges, complicating the modeling of agent heterogeneity. Additionally, the influence of multi-period market dynamics and multifaceted macroeconomic factors are often overlooked in decision-making processes.In this work, we introduce **EconAgent**, a large language model-empowered agent with human-like characteristics for macroeconomic simulation. We first construct a simulation environment that incorporates various market dynamics driven by agents’ decisions regarding work and consumption. Through the perception module, we create heterogeneous agents with distinct decision-making mechanisms. Furthermore, we model the impact of macroeconomic trends using a memory module, which allows agents to reflect on past individual experiences and market dynamics.Simulation experiments show that EconAgent can make realistic decisions, leading to more reasonable macroeconomic phenomena compared to existing rule-based or learning-based agents. Our codes are released at https://github.com/tsinghua-fib-lab/ACL24-EconAgent.

2022

pdf bib
1Cademy @ Causal News Corpus 2022: Leveraging Self-Training in Causality Classification of Socio-Political Event Data
Adam Nik | Ge Zhang | Xingran Chen | Mingyu Li | Jie Fu
Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE)

This paper details our participation in the Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE) workshop @ EMNLP 2022, where we take part in Subtask 1 of Shared Task 3 (CITATION). We approach the given task of event causality detection by proposing a self-training pipeline that follows a teacher-student classifier method. More specifically, we initially train a teacher model on the true, original task data, and use that teacher model to self-label data to be used in the training of a separate student model for the final task prediction. We test how restricting the number of positive or negative self-labeled examples in the self-training process affects classification performance. Our final results show that using self-training produces a comprehensive performance improvement across all models and self-labeled training sets tested within the task of event causality sequence classification. On top of that, we find that self-training performance did not diminish even when restricting either positive/negative examples used in training. Our code is be publicly available at https://github.com/Gzhang-umich/1CademyTeamOfCASE.

pdf bib
1Cademy @ Causal News Corpus 2022: Enhance Causal Span Detection via Beam-Search-based Position Selector
Xingran Chen | Ge Zhang | Adam Nik | Mingyu Li | Jie Fu
Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE)

In this paper, we present our approach and empirical observations for Cause-Effect Signal Span Detection—Subtask 2 of Shared task 3 at CASE 2022. The shared task aims to extract the cause, effect, and signal spans from a given causal sentence. We model the task as a reading comprehension (RC) problem and apply a token-level RC-based span prediction paradigm to the task as the baseline. We explore different training objectives to fine-tune the model, as well as data augmentation (DA) tricks based on the language model (LM) for performance improvement. Additionally, we propose an efficient beam-search post-processing strategy to due with the drawbacks of span detection to obtain a further performance gain. Our approach achieves an average F1 score of 54.15 and ranks 1ˆst in the CASE competition. Our code is available at https://github.com/Gzhang-umich/1CademyTeamOfCASE.