Minh Van Nguyen


pdf bib
Document-Level Event Argument Extraction via Optimal Transport
Amir Pouran Ben Veyseh | Minh Van Nguyen | Franck Dernoncourt | Bonan Min | Thien Nguyen
Findings of the Association for Computational Linguistics: ACL 2022

Event Argument Extraction (EAE) is one of the sub-tasks of event extraction, aiming to recognize the role of each entity mention toward a specific event trigger. Despite the success of prior works in sentence-level EAE, the document-level setting is less explored. In particular, whereas syntactic structures of sentences have been shown to be effective for sentence-level EAE, prior document-level EAE models totally ignore syntactic structures for documents. Hence, in this work, we study the importance of syntactic structures in document-level EAE. Specifically, we propose to employ Optimal Transport (OT) to induce structures of documents based on sentence-level syntactic structures and tailored to EAE task. Furthermore, we propose a novel regularization technique to explicitly constrain the contributions of unrelated context words in the final prediction for EAE. We perform extensive experiments on the benchmark document-level EAE dataset RAMS that leads to the state-of-the-art performance. Moreover, our experiments on the ACE 2005 dataset reveals the effectiveness of the proposed model in the sentence-level EAE by establishing new state-of-the-art results.


pdf bib
Learning Cross-lingual Representations for Event Coreference Resolution with Multi-view Alignment and Optimal Transport
Duy Phung | Hieu Minh Tran | Minh Van Nguyen | Thien Huu Nguyen
Proceedings of the 1st Workshop on Multilingual Representation Learning

We study a new problem of cross-lingual transfer learning for event coreference resolution (ECR) where models trained on data from a source language are adapted for evaluations in different target languages. We introduce the first baseline model for this task based on XLM-RoBERTa, a state-of-the-art multilingual pre-trained language model. We also explore language adversarial neural networks (LANN) that present language discriminators to distinguish texts from the source and target languages to improve the language generalization for ECR. In addition, we introduce two novel mechanisms to further enhance the general representation learning of LANN, featuring: (i) multi-view alignment to penalize cross coreference-label alignment of examples in the source and target languages, and (ii) optimal transport to select close examples in the source and target languages to provide better training signals for the language discriminators. Finally, we perform extensive experiments for cross-lingual ECR from English to Spanish and Chinese to demonstrate the effectiveness of the proposed methods.

pdf bib
Improving Cross-Lingual Transfer for Event Argument Extraction with Language-Universal Sentence Structures
Minh Van Nguyen | Thien Huu Nguyen
Proceedings of the Sixth Arabic Natural Language Processing Workshop

We study the problem of Cross-lingual Event Argument Extraction (CEAE). The task aims to predict argument roles of entity mentions for events in text, whose language is different from the language that a predictive model has been trained on. Previous work on CEAE has shown the cross-lingual benefits of universal dependency trees in capturing shared syntactic structures of sentences across languages. In particular, this work exploits the existence of the syntactic connections between the words in the dependency trees as the anchor knowledge to transfer the representation learning across languages for CEAE models (i.e., via graph convolutional neural networks – GCNs). In this paper, we introduce two novel sources of language-independent information for CEAE models based on the semantic similarity and the universal dependency relations of the word pairs in different languages. We propose to use the two sources of information to produce shared sentence structures to bridge the gap between languages and improve the cross-lingual performance of the CEAE models. Extensive experiments are conducted with Arabic, Chinese, and English to demonstrate the effectiveness of the proposed method for CEAE.

pdf bib
Fine-grained Temporal Relation Extraction with Ordered-Neuron LSTM and Graph Convolutional Networks
Minh Tran Phu | Minh Van Nguyen | Thien Huu Nguyen
Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)

Fine-grained temporal relation extraction (FineTempRel) aims to recognize the durations and timeline of event mentions in text. A missing part in the current deep learning models for FineTempRel is their failure to exploit the syntactic structures of the input sentences to enrich the representation vectors. In this work, we propose to fill this gap by introducing novel methods to integrate the syntactic structures into the deep learning models for FineTempRel. The proposed model focuses on two types of syntactic information from the dependency trees, i.e., the syntax-based importance scores for representation learning of the words and the syntactic connections to identify important context words for the event mentions. We also present two novel techniques to facilitate the knowledge transfer between the subtasks of FineTempRel, leading to a novel model with the state-of-the-art performance for this task.

pdf bib
Modeling Document-Level Context for Event Detection via Important Context Selection
Amir Pouran Ben Veyseh | Minh Van Nguyen | Nghia Ngo Trung | Bonan Min | Thien Huu Nguyen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The task of Event Detection (ED) in Information Extraction aims to recognize and classify trigger words of events in text. The recent progress has featured advanced transformer-based language models (e.g., BERT) as a critical component in state-of-the-art models for ED. However, the length limit for input texts is a barrier for such ED models as they cannot encode long-range document-level context that has been shown to be beneficial for ED. To address this issue, we propose a novel method to model document-level context for ED that dynamically selects relevant sentences in the document for the event prediction of the target sentence. The target sentence will be then augmented with the selected sentences and consumed entirely by transformer-based language models for improved representation learning for ED. To this end, the REINFORCE algorithm is employed to train the relevant sentence selection for ED. Several information types are then introduced to form the reward function for the training process, including ED performance, sentence similarity, and discourse relations. Our extensive experiments on multiple benchmark datasets reveal the effectiveness of the proposed model, leading to new state-of-the-art performance.

pdf bib
Crosslingual Transfer Learning for Relation and Event Extraction via Word Category and Class Alignments
Minh Van Nguyen | Tuan Ngo Nguyen | Bonan Min | Thien Huu Nguyen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Previous work on crosslingual Relation and Event Extraction (REE) suffers from the monolingual bias issue due to the training of models on only the source language data. An approach to overcome this issue is to use unlabeled data in the target language to aid the alignment of crosslingual representations, i.e., via fooling a language discriminator. However, as this approach does not condition on class information, a target language example of a class could be incorrectly aligned to a source language example of a different class. To address this issue, we propose a novel crosslingual alignment method that leverages class information of REE tasks for representation learning. In particular, we propose to learn two versions of representation vectors for each class in an REE task based on either source or target language examples. Representation vectors for corresponding classes will then be aligned to achieve class-aware alignment for crosslingual representations. In addition, we propose to further align representation vectors for language-universal word categories (i.e., parts of speech and dependency relations). As such, a novel filtering mechanism is presented to facilitate the learning of word category representations from contextualized representations on input texts based on adversarial learning. We conduct extensive crosslingual experiments with English, Chinese, and Arabic over REE tasks. The results demonstrate the benefits of the proposed method that significantly advances the state-of-the-art performance in these settings.

pdf bib
Event Extraction from Historical Texts: A New Dataset for Black Rebellions
Viet Lai | Minh Van Nguyen | Heidi Kaufman | Thien Huu Nguyen
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Cross-Task Instance Representation Interactions and Label Dependencies for Joint Information Extraction with Graph Convolutional Networks
Minh Van Nguyen | Viet Lai | Thien Huu Nguyen
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Existing works on information extraction (IE) have mainly solved the four main tasks separately (entity mention recognition, relation extraction, event trigger detection, and argument extraction), thus failing to benefit from inter-dependencies between tasks. This paper presents a novel deep learning model to simultaneously solve the four tasks of IE in a single model (called FourIE). Compared to few prior work on jointly performing four IE tasks, FourIE features two novel contributions to capture inter-dependencies between tasks. First, at the representation level, we introduce an interaction graph between instances of the four tasks that is used to enrich the prediction representation for one instance with those from related instances of other tasks. Second, at the label level, we propose a dependency graph for the information types in the four IE tasks that captures the connections between the types expressed in an input sentence. A new regularization mechanism is introduced to enforce the consistency between the golden and predicted type dependency graphs to improve representation learning. We show that the proposed model achieves the state-of-the-art performance for joint IE on both monolingual and multilingual learning settings with three different languages.

pdf bib
Trankit: A Light-Weight Transformer-based Toolkit for Multilingual Natural Language Processing
Minh Van Nguyen | Viet Dac Lai | Amir Pouran Ben Veyseh | Thien Huu Nguyen
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations

We introduce Trankit, a light-weight Transformer-based Toolkit for multilingual Natural Language Processing (NLP). It provides a trainable pipeline for fundamental NLP tasks over 100 languages, and 90 pretrained pipelines for 56 languages. Built on a state-of-the-art pretrained language model, Trankit significantly outperforms prior multilingual NLP pipelines over sentence segmentation, part-of-speech tagging, morphological feature tagging, and dependency parsing while maintaining competitive performance for tokenization, multi-word token expansion, and lemmatization over 90 Universal Dependencies treebanks. Despite the use of a large pretrained transformer, our toolkit is still efficient in memory usage and speed. This is achieved by our novel plug-and-play mechanism with Adapters where a multilingual pretrained transformer is shared across pipelines for different languages. Our toolkit along with pretrained models and code are publicly available at: https://github.com/nlp-uoregon/trankit. A demo website for our toolkit is also available at: http://nlp.uoregon.edu/trankit. Finally, we create a demo video for Trankit at: https://youtu.be/q0KGP3zGjGc.