Minqian Liu


2024

pdf bib
Holistic Evaluation for Interleaved Text-and-Image Generation
Minqian Liu | Zhiyang Xu | Zihao Lin | Trevor Ashby | Joy Rimchala | Jiaxin Zhang | Lifu Huang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Interleaved text-and-image generation has been an intriguing research direction, where the models are required to generate both images and text pieces in an arbitrary order. Despite the emerging advancements in interleaved generation, the progress in its evaluation still significantly lags behind. Existing evaluation benchmarks do not support arbitrarily interleaved images and text for both inputs and outputs, and they only cover a limited number of domains and use cases. Also, current works predominantly use similarity-based metrics which fall short in assessing the quality in open-ended scenarios. To this end, we introduce InterleavedBench, the first benchmark carefully curated for the evaluation of interleaved text-and-image generation. InterleavedBench features a rich array of tasks to cover diverse real-world use cases. In addition, we present InterleavedEval, a strong reference-free metric powered by GPT-4o to deliver accurate and explainable evaluation. We carefully define five essential evaluation aspects for InterleavedEval, including text quality, perceptual quality, image coherence, text-image coherence, and helpfulness, to ensure a comprehensive and fine-grained assessment. Through extensive experiments and rigorous human evaluation, we show that our benchmark and metric can effectively evaluate the existing models with a strong correlation with human judgments surpassing previous reference-based metrics. We also provide substantial findings and insights to foster future research in interleaved generation and its evaluation.

pdf bib
Towards Effective Long Conversation Generation with Dynamic Topic Tracking and Recommendation
Trevor Ashby | Adithya Kulkarni | Jingyuan Qi | Minqian Liu | Eunah Cho | Vaibhav Kumar | Lifu Huang
Proceedings of the 17th International Natural Language Generation Conference

During conversations, the human flow of thoughts may result in topic shifts and evolution. In open-domain dialogue systems, it is crucial to track the topics discussed and recommend relevant topics to be included in responses to have effective conversations. Furthermore, topic evolution is needed to prevent stagnation as conversation length increases. Existing open-domain dialogue systems do not pay sufficient attention to topic evolution and shifting, resulting in performance degradation due to ineffective responses as conversation length increases. To address the shortcomings of existing approaches, we propose EvolvConv. EvolvConv conducts real-time conversation topic and user preference tracking and utilizes the tracking information to evolve and shift topics depending on conversation status. We conduct extensive experiments to validate the topic evolving and shifting capabilities of EvolvConv as conversation length increases. Un-referenced evaluation metric UniEval compare EvolvConv with the baselines. Experimental results show that EvolvConv maintains a smooth conversation flow without abruptly shifting topics; the probability of topic shifting ranges between 5%-8% throughout the conversation. EvolvConv recommends 4.77% more novel topics than the baselines, and the topic evolution follows balanced topic groupings. Furthermore, we conduct user surveys to test the practical viability of EvolvConv. User survey results reveal that responses generated by EvolvConv are preferred 47.8% of the time compared to the baselines and comes second to real human responses.

pdf bib
X-Eval: Generalizable Multi-aspect Text Evaluation via Augmented Instruction Tuning with Auxiliary Evaluation Aspects
Minqian Liu | Ying Shen | Zhiyang Xu | Yixin Cao | Eunah Cho | Vaibhav Kumar | Reza Ghanadan | Lifu Huang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Natural Language Generation (NLG) typically involves evaluating the generated text in various aspects (e.g., consistency and naturalness) to obtain a comprehensive assessment. However, multi-aspect evaluation remains challenging as it may require the evaluator to generalize to any given evaluation aspect even if it’s absent during training. In this paper, we introduce X-Eval, a two-stage instruction tuning framework to evaluate text in both seen and unseen aspects customized by end users. X-Eval consists of two learning stages: the vanilla instruction tuning stage that improves the model’s ability to follow evaluation instructions, and an enhanced instruction tuning stage that exploits the connections between fine-grained evaluation aspects to better assess text quality. To support the training of X-Eval, we collect AspectInstruct, the first instruction tuning dataset tailored for multi-aspect NLG evaluation spanning 27 diverse evaluation aspects with 65 tasks. To enhance task diversity, we devise an augmentation strategy that converts human rating annotations into diverse forms of NLG evaluation tasks, including scoring, comparison, ranking, and Boolean question answering. Extensive experiments across three essential categories of NLG tasks: dialogue generation, summarization, and data-to-text coupled with 21 aspects in meta-evaluation, demonstrate that X-Eval enables even a lightweight language model to achieve a comparable if not higher correlation with human judgments compared to the state-of-the-art NLG evaluators like GPT-4.

pdf bib
Ameli: Enhancing Multimodal Entity Linking with Fine-Grained Attributes
Barry Yao | Sijia Wang | Yu Chen | Qifan Wang | Minqian Liu | Zhiyang Xu | Licheng Yu | Lifu Huang
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

We propose attribute-aware multimodal entity linking, where the input consists of a mention described with a text paragraph and images, and the goal is to predict the corresponding target entity from a multimodal knowledge base (KB) where each entity is also accompanied by a text description, visual images, and a collection of attributes that present the meta-information of the entity in a structured format. To facilitate this research endeavor, we construct Ameli, encompassing a new multimodal entity linking benchmark dataset that contains 16,735 mentions described in text and associated with 30,472 images, and a multimodal knowledge base that covers 34,690 entities along with 177,873 entity images and 798,216 attributes. To establish baseline performance on Ameli, we experiment with several state-of-the-art architectures for multimodal entity linking and further propose a new approach that incorporates attributes of entities into disambiguation. Experimental results and extensive qualitative analysis demonstrate that extracting and understanding the attributes of mentions from their text descriptions and visual images play a vital role in multimodal entity linking. To the best of our knowledge, we are the first to integrate attributes in the multimodal entity linking task. The programs, model checkpoints, and the dataset are publicly available at https://github.com/VT-NLP/Ameli.

2023

pdf bib
Teamwork Is Not Always Good: An Empirical Study of Classifier Drift in Class-incremental Information Extraction
Minqian Liu | Lifu Huang
Findings of the Association for Computational Linguistics: ACL 2023

Class-incremental learning (CIL) aims to develop a learning system that can continually learn new classes from a data stream without forgetting previously learned classes. When learning classes incrementally, the classifier must be constantly updated to incorporate new classes, and the drift in decision boundary may lead to severe forgetting. This fundamental challenge, however, has not yet been studied extensively, especially in the setting where no samples from old classes are stored for rehearsal. In this paper, we take a closer look at how the drift in the classifier leads to forgetting, and accordingly, design four simple yet (super-) effective solutions to alleviate the classifier drift: an Individual Classifiers with Frozen Feature Extractor (ICE) framework where we individually train a classifier for each learning session, and its three variants ICE-PL, ICE-O, and ICE-PL&O which further take the logits of previously learned classes from old sessions or a constant logit of an Other class as constraint to the learning of new classifiers. Extensive experiments and analysis on 6 class-incremental information extraction tasks demonstrate that our solutions, especially ICE-O, consistently show significant improvement over the previous state-of-the-art approaches with up to 44.7% absolute F-score gain, providing a strong baseline and insights for future research on class-incremental learning.

pdf bib
The Art of SOCRATIC QUESTIONING: Recursive Thinking with Large Language Models
Jingyuan Qi | Zhiyang Xu | Ying Shen | Minqian Liu | Di Jin | Qifan Wang | Lifu Huang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Chain-of-Thought (CoT) prompting enables large language models to solve complex reasoning problems by generating intermediate steps. However, confined by its inherent single-pass and sequential generation process, CoT heavily relies on the initial decisions, causing errors in early steps to accumulate and impact the final answers. In contrast, humans adopt recursive thinking when tackling complex reasoning problems, i.e. iteratively breaking the original problem into approachable sub-problems and aggregating their answers to resolve the original one. Inspired by the human cognitive process, we propose SOCRATIC QUESTIONING, a divide-and-conquer style algorithm that mimics the recursive thinking process. Specifically, SOCRATIC QUESTIONING leverages large language models to raise and answer sub-questions until collecting enough information to tackle the original question. Unlike CoT, SOCRATIC QUESTIONING explicitly navigates the thinking space, stimulates effective recursive thinking, and is more robust towards errors in the thinking process. Extensive experiments on several complex reasoning tasks, including MMLU, MATH, LogiQA, and visual question-answering demonstrate significant performance improvements over the state-of-the-art prompting methods, such as CoT, and Tree-of-Thought. The qualitative analysis clearly shows that the intermediate reasoning steps elicited by SOCRATIC QUESTIONING are similar to humans’ recursively thinking process of complex reasoning problems.

2022

pdf bib
Incremental Prompting: Episodic Memory Prompt for Lifelong Event Detection
Minqian Liu | Shiyu Chang | Lifu Huang
Proceedings of the 29th International Conference on Computational Linguistics

Lifelong event detection aims to incrementally update a model with new event types and data while retaining the capability on previously learned old types. One critical challenge is that the model would catastrophically forget old types when continually trained on new data. In this paper, we introduce Episodic Memory Prompts (EMP) to explicitly retain the learned task-specific knowledge. Our method adopts continuous prompt for each task and they are optimized to instruct the model prediction and learn event-specific representation. The EMPs learned in previous tasks are carried along with the model in subsequent tasks, and can serve as a memory module that keeps the old knowledge and transferring to new tasks. Experiment results demonstrate the effectiveness of our method. Furthermore, we also conduct a comprehensive analysis of the new and old event types in lifelong learning.