Minsu Kim
2024
Epistemology of Language Models: Do Language Models Have Holistic Knowledge?
Minsu Kim
|
James Thorne
Findings of the Association for Computational Linguistics: ACL 2024
This paper investigates the inherent knowledge in language models from the perspective of epistemological holism. The purpose of this paper is to explore whether LLMs exhibit characteristics consistent with epistemological holism. These characteristics suggest that core knowledge, such as commonsense, general, and specific knowledge, each plays a specific role, serving as the foundation of our knowledge system and being difficult to revise. To assess these traits related to holism, we created a scientific reasoning dataset and examined the epistemology of language models through three tasks: Abduction, Revision, and Argument Generation. In the abduction task, the language models explained situations while avoiding revising the core knowledge. However, in other tasks, the language models were revealed not to distinguish between core and peripheral knowledge, showing an incomplete alignment with holistic knowledge principles.
Where Visual Speech Meets Language: VSP-LLM Framework for Efficient and Context-Aware Visual Speech Processing
Jeonghun Yeo
|
Seunghee Han
|
Minsu Kim
|
Yong Man Ro
Findings of the Association for Computational Linguistics: EMNLP 2024
In visual speech processing, context modeling capability is one of the most important requirements due to the ambiguous nature of lip movements. For example, homophenes, words that share identical lip movements but produce different sounds, can be distinguished by considering the context. In this paper, we propose a novel framework, namely Visual Speech Processing incorporated with LLMs (VSP-LLM), to maximize the context modeling ability by bringing the overwhelming power of LLMs. Specifically, VSP-LLM is designed to perform multi-tasks of visual speech recognition and translation, where the given instructions control the type of task. The input video is mapped to the input latent space of an LLM by employing a self-supervised visual speech model. Focused on the fact that there is redundant information in input frames, we propose a novel deduplication method that reduces the embedded visual features by employing visual speech units. Through the proposed deduplication and low rank adaptation, VSP-LLM can be trained in a computationally efficient manner. In the translation dataset, the MuAViC benchmark, we demonstrate that VSP-LLM trained on just 30 hours of labeled data can more effectively translate compared to the recent model trained with 433 hours of data.
Let’s Go Real Talk: Spoken Dialogue Model for Face-to-Face Conversation
Se Park
|
Chae Kim
|
Hyeongseop Rha
|
Minsu Kim
|
Joanna Hong
|
Jeonghun Yeo
|
Yong Ro
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
In this paper, we introduce a novel Face-to-Face spoken dialogue model. It processes audio-visual speech from user input and generates audio-visual speech as the response, marking the initial step towards creating an avatar chatbot system without relying on intermediate text. To this end, we newly introduce MultiDialog, the first large-scale multimodal (i.e, audio and visual) spoken dialogue corpus containing 340 hours of approximately 9,000 dialogues, recorded based on the open domain dialogue dataset, TopicalChat. The MultiDialog contains parallel audio-visual recordings of conversation partners acting according to the given script with emotion annotations, which we expect to open up research opportunities in multimodal synthesis. Our Face-to-Face spoken dialogue model incorporates a textually pretrained large language model and adapts it into the audio-visual spoken dialogue domain by incorporating speech-text joint pretraining. Through extensive experiments, we validate the effectiveness of our model in facilitating a face-to-face conversation. Demo and data are available at https://multidialog.github.io and https://huggingface.co/datasets/IVLLab/MultiDialog, respectively.
Search
Co-authors
- Jeonghun Yeo 2
- James Thorne 1
- Seunghee Han 1
- Yong Man Ro 1
- Se Park 1
- show all...