Miryam de Lhoneux


2021

pdf bib
Itihasa: A large-scale corpus for Sanskrit to English translation
Rahul Aralikatte | Miryam de Lhoneux | Anoop Kunchukuttan | Anders Søgaard
Proceedings of the 8th Workshop on Asian Translation (WAT2021)

This work introduces Itihasa, a large-scale translation dataset containing 93,000 pairs of Sanskrit shlokas and their English translations. The shlokas are extracted from two Indian epics viz., The Ramayana and The Mahabharata. We first describe the motivation behind the curation of such a dataset and follow up with empirical analysis to bring out its nuances. We then benchmark the performance of standard translation models on this corpus and show that even state-of-the-art transformer architectures perform poorly, emphasizing the complexity of the dataset.

pdf bib
How far can we get with one GPU in 100 hours? CoAStaL at MultiIndicMT Shared Task
Rahul Aralikatte | Héctor Ricardo Murrieta Bello | Miryam de Lhoneux | Daniel Hershcovich | Marcel Bollmann | Anders Søgaard
Proceedings of the 8th Workshop on Asian Translation (WAT2021)

This work shows that competitive translation results can be obtained in a constrained setting by incorporating the latest advances in memory and compute optimization. We train and evaluate large multilingual translation models using a single GPU for a maximum of 100 hours and get within 4-5 BLEU points of the top submission on the leaderboard. We also benchmark standard baselines on the PMI corpus and re-discover well-known shortcomings of translation systems and metrics.

pdf bib
Moses and the Character-Based Random Babbling Baseline: CoAStaL at AmericasNLP 2021 Shared Task
Marcel Bollmann | Rahul Aralikatte | Héctor Murrieta Bello | Daniel Hershcovich | Miryam de Lhoneux | Anders Søgaard
Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas

We evaluated a range of neural machine translation techniques developed specifically for low-resource scenarios. Unsuccessfully. In the end, we submitted two runs: (i) a standard phrase-based model, and (ii) a random babbling baseline using character trigrams. We found that it was surprisingly hard to beat (i), in spite of this model being, in theory, a bad fit for polysynthetic languages; and more interestingly, that (ii) was better than several of the submitted systems, highlighting how difficult low-resource machine translation for polysynthetic languages is.

2020

pdf bib
Comparison by Conversion: Reverse-Engineering UCCA from Syntax and Lexical Semantics
Daniel Hershcovich | Nathan Schneider | Dotan Dvir | Jakob Prange | Miryam de Lhoneux | Omri Abend
Proceedings of the 28th International Conference on Computational Linguistics

Building robust natural language understanding systems will require a clear characterization of whether and how various linguistic meaning representations complement each other. To perform a systematic comparative analysis, we evaluate the mapping between meaning representations from different frameworks using two complementary methods: (i) a rule-based converter, and (ii) a supervised delexicalized parser that parses to one framework using only information from the other as features. We apply these methods to convert the STREUSLE corpus (with syntactic and lexical semantic annotations) to UCCA (a graph-structured full-sentence meaning representation). Both methods yield surprisingly accurate target representations, close to fully supervised UCCA parser quality—indicating that UCCA annotations are partially redundant with STREUSLE annotations. Despite this substantial convergence between frameworks, we find several important areas of divergence.

pdf bib
Proceedings of the Fourth Workshop on Universal Dependencies (UDW 2020)
Marie-Catherine de Marneffe | Miryam de Lhoneux | Joakim Nivre | Sebastian Schuster
Proceedings of the Fourth Workshop on Universal Dependencies (UDW 2020)

pdf bib
What Should/Do/Can LSTMs Learn When Parsing Auxiliary Verb Constructions?
Miryam de Lhoneux | Sara Stymne | Joakim Nivre
Computational Linguistics, Volume 46, Issue 4 - December 2020

There is a growing interest in investigating what neural NLP models learn about language. A prominent open question is the question of whether or not it is necessary to model hierarchical structure. We present a linguistic investigation of a neural parser adding insights to this question. We look at transitivity and agreement information of auxiliary verb constructions (AVCs) in comparison to finite main verbs (FMVs). This comparison is motivated by theoretical work in dependency grammar and in particular the work of Tesnière (1959), where AVCs and FMVs are both instances of a nucleus, the basic unit of syntax. An AVC is a dissociated nucleus; it consists of at least two words, and an FMV is its non-dissociated counterpart, consisting of exactly one word. We suggest that the representation of AVCs and FMVs should capture similar information. We use diagnostic classifiers to probe agreement and transitivity information in vectors learned by a transition-based neural parser in four typologically different languages. We find that the parser learns different information about AVCs and FMVs if only sequential models (BiLSTMs) are used in the architecture but similar information when a recursive layer is used. We find explanations for why this is the case by looking closely at how information is learned in the network and looking at what happens with different dependency representations of AVCs. We conclude that there may be benefits to using a recursive layer in dependency parsing and that we have not yet found the best way to integrate it in our parsers.

pdf bib
Køpsala: Transition-Based Graph Parsing via Efficient Training and Effective Encoding
Daniel Hershcovich | Miryam de Lhoneux | Artur Kulmizev | Elham Pejhan | Joakim Nivre
Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task on Parsing into Enhanced Universal Dependencies

We present Køpsala, the Copenhagen-Uppsala system for the Enhanced Universal Dependencies Shared Task at IWPT 2020. Our system is a pipeline consisting of off-the-shelf models for everything but enhanced graph parsing, and for the latter, a transition-based graph parser adapted from Che et al. (2019). We train a single enhanced parser model per language, using gold sentence splitting and tokenization for training, and rely only on tokenized surface forms and multilingual BERT for encoding. While a bug introduced just before submission resulted in a severe drop in precision, its post-submission fix would bring us to 4th place in the official ranking, according to average ELAS. Our parser demonstrates that a unified pipeline is effective for both Meaning Representation Parsing and Enhanced Universal Dependencies.

2019

pdf bib
Deep Contextualized Word Embeddings in Transition-Based and Graph-Based Dependency Parsing - A Tale of Two Parsers Revisited
Artur Kulmizev | Miryam de Lhoneux | Johannes Gontrum | Elena Fano | Joakim Nivre
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Transition-based and graph-based dependency parsers have previously been shown to have complementary strengths and weaknesses: transition-based parsers exploit rich structural features but suffer from error propagation, while graph-based parsers benefit from global optimization but have restricted feature scope. In this paper, we show that, even though some details of the picture have changed after the switch to neural networks and continuous representations, the basic trade-off between rich features and global optimization remains essentially the same. Moreover, we show that deep contextualized word embeddings, which allow parsers to pack information about global sentence structure into local feature representations, benefit transition-based parsers more than graph-based parsers, making the two approaches virtually equivalent in terms of both accuracy and error profile. We argue that the reason is that these representations help prevent search errors and thereby allow transition-based parsers to better exploit their inherent strength of making accurate local decisions. We support this explanation by an error analysis of parsing experiments on 13 languages.

pdf bib
Recursive Subtree Composition in LSTM-Based Dependency Parsing
Miryam de Lhoneux | Miguel Ballesteros | Joakim Nivre
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

The need for tree structure modelling on top of sequence modelling is an open issue in neural dependency parsing. We investigate the impact of adding a tree layer on top of a sequential model by recursively composing subtree representations (composition) in a transition-based parser that uses features extracted by a BiLSTM. Composition seems superfluous with such a model, suggesting that BiLSTMs capture information about subtrees. We perform model ablations to tease out the conditions under which composition helps. When ablating the backward LSTM, performance drops and composition does not recover much of the gap. When ablating the forward LSTM, performance drops less dramatically and composition recovers a substantial part of the gap, indicating that a forward LSTM and composition capture similar information. We take the backward LSTM to be related to lookahead features and the forward LSTM to the rich history-based features both crucial for transition-based parsers. To capture history-based information, composition is better than a forward LSTM on its own, but it is even better to have a forward LSTM as part of a BiLSTM. We correlate results with language properties, showing that the improved lookahead of a backward LSTM is especially important for head-final languages.

2018

pdf bib
82 Treebanks, 34 Models: Universal Dependency Parsing with Multi-Treebank Models
Aaron Smith | Bernd Bohnet | Miryam de Lhoneux | Joakim Nivre | Yan Shao | Sara Stymne
Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies

We present the Uppsala system for the CoNLL 2018 Shared Task on universal dependency parsing. Our system is a pipeline consisting of three components: the first performs joint word and sentence segmentation; the second predicts part-of-speech tags and morphological features; the third predicts dependency trees from words and tags. Instead of training a single parsing model for each treebank, we trained models with multiple treebanks for one language or closely related languages, greatly reducing the number of models. On the official test run, we ranked 7th of 27 teams for the LAS and MLAS metrics. Our system obtained the best scores overall for word segmentation, universal POS tagging, and morphological features.

pdf bib
Parser Training with Heterogeneous Treebanks
Sara Stymne | Miryam de Lhoneux | Aaron Smith | Joakim Nivre
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

How to make the most of multiple heterogeneous treebanks when training a monolingual dependency parser is an open question. We start by investigating previously suggested, but little evaluated, strategies for exploiting multiple treebanks based on concatenating training sets, with or without fine-tuning. We go on to propose a new method based on treebank embeddings. We perform experiments for several languages and show that in many cases fine-tuning and treebank embeddings lead to substantial improvements over single treebanks or concatenation, with average gains of 2.0–3.5 LAS points. We argue that treebank embeddings should be preferred due to their conceptual simplicity, flexibility and extensibility.

pdf bib
Nightmare at test time: How punctuation prevents parsers from generalizing
Anders Søgaard | Miryam de Lhoneux | Isabelle Augenstein
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP

Punctuation is a strong indicator of syntactic structure, and parsers trained on text with punctuation often rely heavily on this signal. Punctuation is a diversion, however, since human language processing does not rely on punctuation to the same extent, and in informal texts, we therefore often leave out punctuation. We also use punctuation ungrammatically for emphatic or creative purposes, or simply by mistake. We show that (a) dependency parsers are sensitive to both absence of punctuation and to alternative uses; (b) neural parsers tend to be more sensitive than vintage parsers; (c) training neural parsers without punctuation outperforms all out-of-the-box parsers across all scenarios where punctuation departs from standard punctuation. Our main experiments are on synthetically corrupted data to study the effect of punctuation in isolation and avoid potential confounds, but we also show effects on out-of-domain data.

pdf bib
An Investigation of the Interactions Between Pre-Trained Word Embeddings, Character Models and POS Tags in Dependency Parsing
Aaron Smith | Miryam de Lhoneux | Sara Stymne | Joakim Nivre
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

We provide a comprehensive analysis of the interactions between pre-trained word embeddings, character models and POS tags in a transition-based dependency parser. While previous studies have shown POS information to be less important in the presence of character models, we show that in fact there are complex interactions between all three techniques. In isolation each produces large improvements over a baseline system using randomly initialised word embeddings only, but combining them quickly leads to diminishing returns. We categorise words by frequency, POS tag and language in order to systematically investigate how each of the techniques affects parsing quality. For many word categories, applying any two of the three techniques is almost as good as the full combined system. Character models tend to be more important for low-frequency open-class words, especially in morphologically rich languages, while POS tags can help disambiguate high-frequency function words. We also show that large character embedding sizes help even for languages with small character sets, especially in morphologically rich languages.

pdf bib
Parameter sharing between dependency parsers for related languages
Miryam de Lhoneux | Johannes Bjerva | Isabelle Augenstein | Anders Søgaard
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Previous work has suggested that parameter sharing between transition-based neural dependency parsers for related languages can lead to better performance, but there is no consensus on what parameters to share. We present an evaluation of 27 different parameter sharing strategies across 10 languages, representing five pairs of related languages, each pair from a different language family. We find that sharing transition classifier parameters always helps, whereas the usefulness of sharing word and/or character LSTM parameters varies. Based on this result, we propose an architecture where the transition classifier is shared, and the sharing of word and character parameters is controlled by a parameter that can be tuned on validation data. This model is linguistically motivated and obtains significant improvements over a monolingually trained baseline. We also find that sharing transition classifier parameters helps when training a parser on unrelated language pairs, but we find that, in the case of unrelated languages, sharing too many parameters does not help.

2017

pdf bib
Arc-Hybrid Non-Projective Dependency Parsing with a Static-Dynamic Oracle
Miryam de Lhoneux | Sara Stymne | Joakim Nivre
Proceedings of the 15th International Conference on Parsing Technologies

In this paper, we extend the arc-hybrid system for transition-based parsing with a swap transition that enables reordering of the words and construction of non-projective trees. Although this extension breaks the arc-decomposability of the transition system, we show how the existing dynamic oracle for this system can be modified and combined with a static oracle only for the swap transition. Experiments on 5 languages show that the new system gives competitive accuracy and is significantly better than a system trained with a purely static oracle.

pdf bib
From Raw Text to Universal Dependencies - Look, No Tags!
Miryam de Lhoneux | Yan Shao | Ali Basirat | Eliyahu Kiperwasser | Sara Stymne | Yoav Goldberg | Joakim Nivre
Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies

We present the Uppsala submission to the CoNLL 2017 shared task on parsing from raw text to universal dependencies. Our system is a simple pipeline consisting of two components. The first performs joint word and sentence segmentation on raw text; the second predicts dependency trees from raw words. The parser bypasses the need for part-of-speech tagging, but uses word embeddings based on universal tag distributions. We achieved a macro-averaged LAS F1 of 65.11 in the official test run, which improved to 70.49 after bug fixes. We obtained the 2nd best result for sentence segmentation with a score of 89.03.

2016

pdf bib
Should Have, Would Have, Could Have. Investigating Verb Group Representations for Parsing with Universal Dependencies.
Miryam de Lhoneux | Joakim Nivre
Proceedings of the Workshop on Multilingual and Cross-lingual Methods in NLP