Mitja Nikolaus


pdf bib
Modeling the Interaction Between Perception-Based and Production-Based Learning in Children’s Early Acquisition of Semantic Knowledge
Mitja Nikolaus | Abdellah Fourtassi
Proceedings of the 25th Conference on Computational Natural Language Learning

Children learn the meaning of words and sentences in their native language at an impressive speed and from highly ambiguous input. To account for this learning, previous computational modeling has focused mainly on the study of perception-based mechanisms like cross-situational learning. However, children do not learn only by exposure to the input. As soon as they start to talk, they practice their knowledge in social interactions and they receive feedback from their caregivers. In this work, we propose a model integrating both perception- and production-based learning using artificial neural networks which we train on a large corpus of crowd-sourced images with corresponding descriptions. We found that production-based learning improves performance above and beyond perception-based learning across a wide range of semantic tasks including both word- and sentence-level semantics. In addition, we documented a synergy between these two mechanisms, where their alternation allows the model to converge on more balanced semantic knowledge. The broader impact of this work is to highlight the importance of modeling language learning in the context of social interactions where children are not only understood as passively absorbing the input, but also as actively participating in the construction of their linguistic knowledge.

pdf bib
Evaluating the Acquisition of Semantic Knowledge from Cross-situational Learning in Artificial Neural Networks
Mitja Nikolaus | Abdellah Fourtassi
Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics

When learning their native language, children acquire the meanings of words and sentences from highly ambiguous input without much explicit supervision. One possible learning mechanism is cross-situational learning, which has been successfully tested in laboratory experiments with children. Here we use Artificial Neural Networks to test if this mechanism scales up to more natural language and visual scenes using a large dataset of crowd-sourced images with corresponding descriptions. We evaluate learning using a series of tasks inspired by methods commonly used in laboratory studies of language acquisition. We show that the model acquires rich semantic knowledge both at the word- and sentence-level, mirroring the patterns and trajectory of learning in early childhood. Our work highlights the usefulness of low-level co-occurrence statistics across modalities in facilitating the early acquisition of higher-level semantic knowledge.


pdf bib
Compositional Generalization in Image Captioning
Mitja Nikolaus | Mostafa Abdou | Matthew Lamm | Rahul Aralikatte | Desmond Elliott
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

Image captioning models are usually evaluated on their ability to describe a held-out set of images, not on their ability to generalize to unseen concepts. We study the problem of compositional generalization, which measures how well a model composes unseen combinations of concepts when describing images. State-of-the-art image captioning models show poor generalization performance on this task. We propose a multi-task model to address the poor performance, that combines caption generation and image–sentence ranking, and uses a decoding mechanism that re-ranks the captions according their similarity to the image. This model is substantially better at generalizing to unseen combinations of concepts compared to state-of-the-art captioning models.

pdf bib
On the Realization of Compositionality in Neural Networks
Joris Baan | Jana Leible | Mitja Nikolaus | David Rau | Dennis Ulmer | Tim Baumgärtner | Dieuwke Hupkes | Elia Bruni
Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP

We present a detailed comparison of two types of sequence to sequence models trained to conduct a compositional task. The models are architecturally identical at inference time, but differ in the way that they are trained: our baseline model is trained with a task-success signal only, while the other model receives additional supervision on its attention mechanism (Attentive Guidance), which has shown to be an effective method for encouraging more compositional solutions. We first confirm that the models with attentive guidance indeed infer more compositional solutions than the baseline, by training them on the lookup table task presented by Liska et al. (2019). We then do an in-depth analysis of the structural differences between the two model types, focusing in particular on the organisation of the parameter space and the hidden layer activations and find noticeable differences in both these aspects. Guided networks focus more on the components of the input rather than the sequence as a whole and develop small functional groups of neurons with specific purposes that use their gates more selectively. Results from parameter heat maps, component swapping and graph analysis also indicate that guided networks exhibit a more modular structure with a small number of specialized, strongly connected neurons.