Mobashir Sadat


2023

pdf bib
DelucionQA: Detecting Hallucinations in Domain-specific Question Answering
Mobashir Sadat | Zhengyu Zhou | Lukas Lange | Jun Araki | Arsalan Gundroo | Bingqing Wang | Rakesh Menon | Md Parvez | Zhe Feng
Findings of the Association for Computational Linguistics: EMNLP 2023

Hallucination is a well-known phenomenon in text generated by large language models (LLMs). The existence of hallucinatory responses is found in almost all application scenarios e.g., summarization, question-answering (QA) etc. For applications requiring high reliability (e.g., customer-facing assistants), the potential existence of hallucination in LLM-generated text is a critical problem. The amount of hallucination can be reduced by leveraging information retrieval to provide relevant background information to the LLM. However, LLMs can still generate hallucinatory content for various reasons (e.g., prioritizing its parametric knowledge over the context, failure to capture the relevant information from the context, etc.). Detecting hallucinations through automated methods is thus paramount. To facilitate research in this direction, we introduce a sophisticated dataset, DelucionQA, that captures hallucinations made by retrieval-augmented LLMs for a domain-specific QA task. Furthermore, we propose a set of hallucination detection methods to serve as baselines for future works from the research community. Analysis and case study are also provided to share valuable insights on hallucination phenomena in the target scenario.

2022

pdf bib
Hierarchical Multi-Label Classification of Scientific Documents
Mobashir Sadat | Cornelia Caragea
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Automatic topic classification has been studied extensively to assist managing and indexing scientific documents in a digital collection. With the large number of topics being available in recent years, it has become necessary to arrange them in a hierarchy. Therefore, the automatic classification systems need to be able to classify the documents hierarchically. In addition, each paper is often assigned to more than one relevant topic. For example, a paper can be assigned to several topics in a hierarchy tree. In this paper, we introduce a new dataset for hierarchical multi-label text classification (HMLTC) of scientific papers called SciHTC, which contains 186,160 papers and 1,234 categories from the ACM CCS tree. We establish strong baselines for HMLTC and propose a multi-task learning approach for topic classification with keyword labeling as an auxiliary task. Our best model achieves a Macro-F1 score of 34.57% which shows that this dataset provides significant research opportunities on hierarchical scientific topic classification. We make our dataset and code for all experiments publicly available.

pdf bib
SciNLI: A Corpus for Natural Language Inference on Scientific Text
Mobashir Sadat | Cornelia Caragea
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Existing Natural Language Inference (NLI) datasets, while being instrumental in the advancement of Natural Language Understanding (NLU) research, are not related to scientific text. In this paper, we introduce SciNLI, a large dataset for NLI that captures the formality in scientific text and contains 107,412 sentence pairs extracted from scholarly papers on NLP and computational linguistics. Given that the text used in scientific literature differs vastly from the text used in everyday language both in terms of vocabulary and sentence structure, our dataset is well suited to serve as a benchmark for the evaluation of scientific NLU models. Our experiments show that SciNLI is harder to classify than the existing NLI datasets. Our best performing model with XLNet achieves a Macro F1 score of only 78.18% and an accuracy of 78.23% showing that there is substantial room for improvement.

pdf bib
Learning to Infer from Unlabeled Data: A Semi-supervised Learning Approach for Robust Natural Language Inference
Mobashir Sadat | Cornelia Caragea
Findings of the Association for Computational Linguistics: EMNLP 2022

Natural Language Inference (NLI) or Recognizing Textual Entailment (RTE) aims at predicting the relation between a pair of sentences (premise and hypothesis) as entailment, contradiction or semantic independence. Although deep learning models have shown promising performance for NLI in recent years, they rely on large scale expensive human-annotated datasets. Semi-supervised learning (SSL) is a popular technique for reducing the reliance on human annotation by leveraging unlabeled data for training. However, despite its substantial success on single sentence classification tasks where the challenge in making use of unlabeled data is to assign “good enough” pseudo-labels, for NLI tasks, the nature of unlabeled data is more complex: one of the sentences in the pair (usually the hypothesis) along with the class label are missing from the data and require human annotations, which makes SSL for NLI more challenging. In this paper, we propose a novel way to incorporate unlabeled data in SSL for NLI where we use a conditional language model, BART to generate the hypotheses for the unlabeled sentences (used as premises). Our experiments show that our SSL framework successfully exploits unlabeled data and substantially improves the performance of four NLI datasets in low-resource settings. We release our code here: https://github.com/msadat3/SSL_for_NLI