A Reverse Dictionary is a tool enabling users to discover a word based on its provided definition, meaning, or description. Such a technique proves valuable in various scenarios, aiding language learners who possess a description of a word without its identity, and benefiting writers seeking precise terminology. These scenarios often encapsulate what is referred to as the “Tip-of-the-Tongue” (TOT) phenomena. In this work, we present our winning solution for the Arabic Reverse Dictionary shared task. This task focuses on deriving a vector representation of an Arabic word from its accompanying description. The shared task encompasses two distinct subtasks: the first involves an Arabic definition as input, while the second employs an English definition. For the first subtask, our approach relies on an ensemble of finetuned Arabic BERT-based models, predicting the word embedding for a given definition. The final representation is obtained through averaging the output embeddings from each model within the ensemble. In contrast, the most effective solution for the second subtask involves translating the English test definitions into Arabic and applying them to the finetuned models originally trained for the first subtask. This straightforward method achieves the highest score across both subtasks.
In this paper, we present the results and findings of the Shared Task on Gender Rewriting, which was organized as part of the Seventh Arabic Natural Language Processing Workshop. The task of gender rewriting refers to generating alternatives of a given sentence to match different target user gender contexts (e.g., a female speaker with a male listener, a male speaker with a male listener, etc.). This requires changing the grammatical gender (masculine or feminine) of certain words referring to the users. In this task, we focus on Arabic, a gender-marking morphologically rich language. A total of five teams from four countries participated in the shared task.
In this paper, we tackle the Nuanced Arabic Dialect Identification (NADI) shared task (Abdul-Mageed et al., 2021) and demonstrate state-of-the-art results on all of its four subtasks. Tasks are to identify the geographic origin of short Dialectal (DA) and Modern Standard Arabic (MSA) utterances at the levels of both country and province. Our final model is an ensemble of variants built on top of MARBERT that achieves an F1-score of 34.03% for DA at the country-level development set—an improvement of 7.63% from previous work.
We propose a novel architecture for labelling character sequences that achieves state-of-the-art results on the Tashkeela Arabic diacritization benchmark. The core is a two-level recurrence hierarchy that operates on the word and character levels separately—enabling faster training and inference than comparable traditional models. A cross-level attention module further connects the two and opens the door for network interpretability. The task module is a softmax classifier that enumerates valid combinations of diacritics. This architecture can be extended with a recurrent decoder that optionally accepts priors from partially diacritized text, which improves results. We employ extra tricks such as sentence dropout and majority voting to further boost the final result. Our best model achieves a WER of 5.34%, outperforming the previous state-of-the-art with a 30.56% relative error reduction.