Mohamed Morchid


2016

pdf bib
Auto-encodeurs pour la compréhension de documents parlés (Auto-encoders for Spoken Document Understanding)
Killian Janod | Mohamed Morchid | Richard Dufour | Georges Linarès | Renato De Mori
Actes de la conférence conjointe JEP-TALN-RECITAL 2016. volume 1 : JEP

Les représentations de documents au moyen d’approches à base de réseaux de neurones ont montré des améliorations significatives dans de nombreuses tâches du traitement du langage naturel. Dans le cadre d’applications réelles, où des conditions d’enregistrement difficiles peuvent être rencontrées, la transcription automatique de documents parlés peut générer un nombre de mots mal transcrits important. Cet article propose une représentation des documents parlés très bruités utilisant des caractéristiques apprises par un auto-encodeur profond supervisé. La méthode proposée s’appuie à la fois sur les documents bruités et leur équivalent propre annoté manuellement pour estimer une représentation plus robuste des documents bruités. Cette représentation est évaluée sur le corpus DECODA sur une tâche de classification thématique de conversations téléphoniques atteignant une précision de 83% avec un gain d’environ 6%.

pdf bib
Un Corpus de Flux TV Annotés pour la Prédiction de Genres (A Genre Annotated Corpus of French Multi-channel TV Streams for Genre Prediction)
Mohamed Bouaziz | Mohamed Morchid | Richard Dufour | Georges Linarès | Prosper Correa
Actes de la conférence conjointe JEP-TALN-RECITAL 2016. volume 1 : JEP

Cet article présente une méthode de prédiction de genres d’émissions télévisées couvrant 2 jours de diffusion de 4 chaînes TV françaises structurés en émissions annotées en genres. Ce travail traite des médias de masse de flux de chaînes télévisées et rejoint l’effort global d’extraction de connaissance à partir de cette grande quantité de données produites continuellement. Le corpus employé est fourni par l’entreprise EDD, anciennement appelée “L’Européenne de Données”, une entreprise spécialisée dans la gestion des flux multimédias. Les expériences détaillées dans cet article montrent qu’une approche simple fondée sur un modèle de n-grammes permet de prédire le genre d’une émission selon un historique avec une précision avoisinant les 50 %.

pdf bib
Un Sous-espace Thématique Latent pour la Compréhension du Langage Parlé (A Latent Topic-based Subspace for Spoken Language Understanding)
Mohamed Bouaziz | Mohamed Morchid | Pierre-Michel Bousquet | Richard Dufour | Killian Janod | Waad Ben Kheder | Georges Linarès
Actes de la conférence conjointe JEP-TALN-RECITAL 2016. volume 1 : JEP

Les applications de compréhension du langage parlé sont moins performantes si les documents transcrits automatiquement contiennent un taux d’erreur-mot élevé. Des solutions récentes proposent de projeter ces transcriptions dans un espace de thèmes, comme par exemple l’allocation latente de Dirichlet (LDA), la LDA supervisée ainsi que le modèle author-topic (AT). Une représentation compacte originale, appelée c-vector, a été récemment introduite afin de surmonter la difficulté liée au choix de la taille de ces espaces thématiques. Cette représentation améliore la robustesse aux erreurs de transcription, en compactant les différentes représentations LDA d’un document parlé dans un espace réduit. Le défaut majeur de cette méthode est le nombre élevé de sous-tâches nécessaires à la construction de l’espace c-vector. Cet article propose de corriger ce défaut en utilisant un cadre original fondé sur un espace de caractéristiques robustes de faible dimension provenant d’un ensemble de modèles AT considérant à la fois le contenu du dialogue parlé (les mots) et la classe du document. Les expérimentations, conduites sur le corpus DECODA, montrent que la représentation proposée permet un gain de plus de 2.5 points en termes de conversations correctement classifiées.

2015

pdf bib
Initialisation de Réseaux de Neurones à l’aide d’un Espace Thématique
Mohamed Morchid | Richard Dufour | Georges Linarès
Actes de la 22e conférence sur le Traitement Automatique des Langues Naturelles. Articles courts

Ce papier présente une méthode de traitement de documents parlés intégrant une représentation fondée sur un espace thématique dans un réseau de neurones artificiels (ANN) employé comme classifieur de document. La méthode proposée consiste à configurer la topologie d’un ANN ainsi que d’initialiser les connexions de celui-ci à l’aide des espaces thématiques appris précédemment. Il est attendu que l’initialisation fondée sur les probabilités thématiques permette d’optimiser le processus d’optimisation des poids du réseau ainsi qu’à accélérer la phase d’apprentissage tout en amélioration la précision de la classification d’un document de test. Cette méthode est évaluée lors d’une tâche de catégorisation de dialogues parlés entre des utilisateurs et des agents du service d’appels de la Régie Autonome Des Transports Parisiens (RATP). Les résultats montrent l’intérêt de la méthode proposée d’initialisation d’un réseau, avec un gain observé de plus de 4 points en termes de bonne classification comparativement à l’initialisation aléatoire. De plus, les expérimentations soulignent que les performances sont faiblement dépendantes de la topologie du ANN lorsque les poids de la couche cachée sont initialisés au moyen des espaces de thèmes issus d’une allocation latente de Dirichlet ou latent Dirichlet Allocation (LDA) en comparaison à une initialisation empirique.

pdf bib
Utilisation d’annotations sémantiques pour la validation automatique d’hypothèses dans des conversations téléphoniques
Carole Lailler | Yannick Estève | Renato De Mori | Mohamed Bouallègue | Mohamed Morchid
Actes de la 22e conférence sur le Traitement Automatique des Langues Naturelles. Articles courts

Les travaux présentés portent sur l’extraction automatique d’unités sémantiques et l’évaluation de leur pertinence pour des conversations téléphoniques. Le corpus utilisé est le corpus français DECODA. L’objectif de la tâche est de permettre l’étiquetage automatique en thème de chaque conversation. Compte tenu du caractère spontané de ce type de conversations et de la taille du corpus, nous proposons de recourir à une stratégie semi-supervisée fondée sur la construction d’une ontologie et d’un apprentissage actif simple : un annotateur humain analyse non seulement les listes d’unités sémantiques candidates menant au thème mais étudie également une petite quantité de conversations. La pertinence de la relation unissant les unités sémantiques conservées, le sous-thème issu de l’ontologie et le thème annoté est évaluée par un DNN, prenant en compte une représentation vectorielle du document. L’intégration des unités sémantiques retenues dans le processus de classification en thème améliore les performances.

pdf bib
Apport de l’information temporelle des contextes pour la représentation vectorielle continue des mots
Killian Janod | Mohamed Morchid | Richard Dufour | Georges Linares
Actes de la 22e conférence sur le Traitement Automatique des Langues Naturelles. Articles courts

Les représentations vectorielles continues des mots sont en plein essor et ont déjà été appliquées avec succès à de nombreuses tâches en traitement automatique de la langue (TAL). Dans cet article, nous proposons d’intégrer l’information temporelle issue du contexte des mots au sein des architectures fondées sur les sacs-de-mots continus (continuous bag-of-words ou CBOW) ou sur les Skip-Grams. Ces approches sont manipulées au travers d’un réseau de neurones, l’architecture CBOW cherchant alors à prédire un mot sachant son contexte, alors que l’architecture Skip-Gram prédit un contexte sachant un mot. Cependant, ces modèles, au travers du réseau de neurones, s’appuient sur des représentations en sac-de-mots et ne tiennent pas compte, explicitement, de l’ordre des mots. En conséquence, chaque mot a potentiellement la même influence dans le réseau de neurones. Nous proposons alors une méthode originale qui intègre l’information temporelle des contextes des mots en utilisant leur position relative. Cette méthode s’inspire des modèles contextuels continus. L’information temporelle est traitée comme coefficient de pondération, en entrée du réseau de neurones par le CBOW et dans la couche de sortie par le Skip-Gram. Les premières expériences ont été réalisées en utilisant un corpus de test mesurant la qualité de la relation sémantique-syntactique des mots. Les résultats préliminaires obtenus montrent l’apport du contexte des mots, avec des gains de 7 et 7,7 points respectivement avec l’architecture Skip-Gram et l’architecture CBOW.

2014

pdf bib
A topic-based approach for post-processing correction of automatic translations
Mohamed Morchid | Stéphane Huet | Richard Dufour
Proceedings of the 11th International Workshop on Spoken Language Translation: Evaluation Campaign

We present the LIA systems for the machine translation evaluation campaign of the International Workshop on Spoken Language Translation (IWSLT) 2014 for the English-to-Slovene and English-to-Polish translation tasks. The proposed approach takes into account word context; first, it maps sentences into a latent Dirichlet allocation (LDA) topic space, then it chooses from this space words that are thematically and grammatically close to mistranslated words. This original post-processing approach is compared with a factored translation system built with MOSES. While this postprocessing method does not allow us to achieve better results than a state-of-the-art system, this should be an interesting way to explore, for example by adding this topic space information at an early stage in the translation process.

pdf bib
Characterizing and Predicting Bursty Events: The Buzz Case Study on Twitter
Mohamed Morchid | Georges Linarès | Richard Dufour
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

The prediction of bursty events on the Internet is a challenging task. Difficulties are due to the diversity of information sources, the size of the Internet, dynamics of popularity, user behaviors... On the other hand, Twitter is a structured and limited space. In this paper, we present a new method for predicting bursty events using content-related indices. Prediction is performed by a neural network that combines three features in order to predict the number of retweets of a tweet on the Twitter platform. The indices are related to popularity, expressivity and singularity. Popularity index is based on the analysis of RSS streams. Expressivity uses a dictionary that contains words annotated in terms of expressivity load. Singularity represents outlying topic association estimated via a Latent Dirichlet Allocation (LDA) model. Experiments demonstrate the effectiveness of the proposal with a 72% F-measure prediction score for the tweets that have been forwarded at least 60 times.

pdf bib
A LDA-Based Topic Classification Approach From Highly Imperfect Automatic Transcriptions
Mohamed Morchid | Richard Dufour | Georges Linarès
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

Although the current transcription systems could achieve high recognition performance, they still have a lot of difficulties to transcribe speech in very noisy environments. The transcription quality has a direct impact on classification tasks using text features. In this paper, we propose to identify themes of telephone conversation services with the classical Term Frequency-Inverse Document Frequency using Gini purity criteria (TF-IDF-Gini) method and with a Latent Dirichlet Allocation (LDA) approach. These approaches are coupled with a Support Vector Machine (SVM) classification to resolve theme identification problem. Results show the effectiveness of the proposed LDA-based method compared to the classical TF-IDF-Gini approach in the context of highly imperfect automatic transcriptions. Finally, we discuss the impact of discriminative and non-discriminative words extracted by both methods in terms of transcription accuracy.

pdf bib
An I-vector Based Approach to Compact Multi-Granularity Topic Spaces Representation of Textual Documents
Mohamed Morchid | Mohamed Bouallegue | Richard Dufour | Georges Linarès | Driss Matrouf | Renato de Mori
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

2012

pdf bib
Extraction de mots clefs dans des vidéos Web par Analyse Latente de Dirichlet (LDA-based tagging of Web videos) [in French]
Mohamed Morchid | Georges Linarès
Proceedings of the Joint Conference JEP-TALN-RECITAL 2012, volume 1: JEP