Temporal knowledge graph (TKG) completion models typically rely on having access to the entire graph during training. However, in real-world scenarios, TKG data is often received incrementally as events unfold, leading to a dynamic non-stationary data distribution over time. While one could incorporate fine-tuning to existing methods to allow them to adapt to evolving TKG data, this can lead to forgetting previously learned patterns. Alternatively, retraining the model with the entire updated TKG can mitigate forgetting but is computationally burdensome. To address these challenges, we propose a general continual training framework that is applicable to any TKG completion method, and leverages two key ideas: (i) a temporal regularization that encourages repurposing of less important model parameters for learning new knowledge, and (ii) a clustering-based experience replay that reinforces the past knowledge by selectively preserving only a small portion of the past data. Our experimental results on widely used event-centric TKG datasets demonstrate the effectiveness of our proposed continual training framework in adapting to new events while reducing catastrophic forgetting. Further, we perform ablation studies to show the effectiveness of each component of our proposed framework. Finally, we investigate the relation between the memory dedicated to experience replay and the benefit gained from our clustering-based sampling strategy.
The size and the computational load of fine-tuning large-scale pre-trained neural network are becoming two major obstacles in adopting machine learning in many applications. Continual learning (CL) can serve as a remedy through enabling knowledge-transfer across sequentially arriving tasks which relaxes the need to fine-tune all network weights from scratch. However, existing CL algorithms primarily consider learning unimodal vision-only or language-only tasks. We develop a transformer-based CL architecture for learning bimodal vision-and-language tasks based on increasing the number of the learnable parameters dynamically and using knowledge distillation. The new additional parameters are used to specialize the network for each task. Our approach enables sharing information between the tasks while addressing the challenge of catastrophic forgetting. Our approach is scalable learning to a large number of tasks because it requires little memory and time overhead. Our model reaches state-of-the-art performance on challenging vision-and-language tasks.
Sentiment analysis is a costly yet necessary task for enterprises to study the opinions of their customers to improve their products and to determine optimal marketing strategies. Due to the existence of a wide range of domains across different products and services, cross-domain sentiment analysis methods have received significant attention. These methods mitigate the domain gap between different applications by training cross-domain generalizable classifiers which relax the need for data annotation for each domain. We develop a domain adaptation method which induces large margins between data representations that belong to different classes in an embedding space. This embedding space is trained to be domain-agnostic by matching the data distributions across the domains. Large interclass margins in the source domain help to reduce the effect of “domain shift” in the target domain. Theoretical and empirical analysis are provided to demonstrate that the proposed method is effective.
The ability to continuously expand knowledge over time and utilize it to rapidly generalize to new tasks is a key feature of human linguistic intelligence. Existing models that pursue rapid generalization to new tasks (e.g., few-shot learning methods), however, are mostly trained in a single shot on fixed datasets, unable to dynamically expand their knowledge; while continual learning algorithms are not specifically designed for rapid generalization. We present a new learning setup, Continual Learning of Few-Shot Learners (CLIF), to address challenges of both learning settings in a unified setup. CLIF assumes a model learns from a sequence of diverse NLP tasks arriving sequentially, accumulating knowledge for improved generalization to new tasks, while also retaining performance on the tasks learned earlier. We examine how the generalization ability is affected in the continual learning setup, evaluate a number of continual learning algorithms, and propose a novel regularized adapter generation approach. We find that catastrophic forgetting affects generalization ability to a lesser degree than performance on seen tasks; while continual learning algorithms can still bring considerable benefit to the generalization ability.