Mohammed Khalilia


pdf bib
Context-Gloss Augmentation for Improving Arabic Target Sense Verification
Sanad Malaysha | Mustafa Jarrar | Mohammed Khalilia
Proceedings of the 12th Global Wordnet Conference

Arabic language lacks semantic datasets and sense inventories. The most common semantically-labeled dataset for Arabic is the ArabGlossBERT, a relatively small dataset that consists of 167K context-gloss pairs (about 60K positive and 107K negative pairs), collected from Arabic dictionaries. This paper presents an enrichment to the ArabGlossBERT dataset, by augmenting it using (Arabic-English-Arabic) machine back-translation. Augmentation increased the dataset size to 352K pairs (149K positive and 203K negative pairs). We measure the impact of augmentation using different data configurations to fine-tune BERT on target sense verification (TSV) task. Overall, the accuracy ranges between 78% to 84% for different data configurations. Although our approach performed at par with the baseline, we did observe some improvements for some POS tags in some experiments. Furthermore, our fine-tuned models are trained on a larger dataset covering larger vocabulary and contexts. We provide an in-depth analysis of the accuracy for each part-of-speech (POS).

pdf bib
ArBanking77: Intent Detection Neural Model and a New Dataset in Modern and Dialectical Arabic
Mustafa Jarrar | Ahmet Birim | Mohammed Khalilia | Mustafa Erden | Sana Ghanem
Proceedings of ArabicNLP 2023

This paper presents the ArBanking77, a large Arabic dataset for intent detection in the banking domain. Our dataset was arabized and localized from the original English Banking77 dataset, which consists of 13,083 queries to ArBanking77 dataset with 31,404 queries in both Modern Standard Arabic (MSA) and Palestinian dialect, with each query classified into one of the 77 classes (intents). Furthermore, we present a neural model, based on AraBERT, fine-tuned on ArBanking77, which achieved an F1-score of 0.9209 and 0.8995 on MSA and Palestinian dialect, respectively. We performed extensive experimentation in which we simulated low-resource settings, where the model is trained on a subset of the data and augmented with noisy queries to simulate colloquial terms, mistakes and misspellings found in real NLP systems, especially live chat queries. The data and the models are publicly available at

pdf bib
Arabic Fine-Grained Entity Recognition
Haneen Liqreina | Mustafa Jarrar | Mohammed Khalilia | Ahmed El-Shangiti | Muhammad Abdul-Mageed
Proceedings of ArabicNLP 2023

Traditional NER systems are typically trained to recognize coarse-grained categories of entities, and less attention is given to classifying entities into a hierarchy of fine-grained lower-level sub-types. This article aims to advance Arabic NER with fine-grained entities. We chose to extend Wojood (an open-source Nested Arabic Named Entity Corpus) with sub-types. In particular, four main entity types in Wojood (geopolitical entity (GPE), location (LOC), organization (ORG), and facility (FAC) are extended with 31 sub-types of entities. To do this, we first revised Wojood’s annotations of GPE, LOC, ORG, and FAC to be compatible with the LDC’s ACE guidelines, which yielded 5, 614 changes. Second, all mentions of GPE, LOC, ORG, and FAC (~ 44K) in Wojood are manually annotated with the LDC’s ACE subtypes. This extended version of Wojood is called WojoodFine. To evaluate our annotations, we measured the inter-annotator agreement (IAA) using both Cohen’s Kappa and F1 score, resulting in 0.9861 and 0.9889, respectively. To compute the baselines of WojoodFine, we fine-tune three pre-trained Arabic BERT encoders in three settings: flat NER, nested NER and nested NER with sub-types and achieved F1 score of 0.920, 0.866, and 0.885, respectively. Our corpus and models are open source and available at

pdf bib
SALMA: Arabic Sense-Annotated Corpus and WSD Benchmarks
Mustafa Jarrar | Sanad Malaysha | Tymaa Hammouda | Mohammed Khalilia
Proceedings of ArabicNLP 2023

SALMA, the first Arabic sense-annotated corpus, consists of ~34K tokens, which are all sense-annotated. The corpus is annotated using two different sense inventories simultaneously (Modern and Ghani). SALMA novelty lies in how tokens and senses are associated. Instead of linking a token to only one intended sense, SALMA links a token to multiple senses and provides a score to each sense. A smart web-based annotation tool was developed to support scoring multiple senses against a given word. In addition to sense annotations, we also annotated the corpus using six types of named entities. The quality of our annotations was assessed using various metrics (Kappa, Linear Weighted Kappa, Quadratic Weighted Kappa, Mean Average Error, and Root Mean Square Error), which show very high inter-annotator agreement. To establish a Word Sense Disambiguation baseline using our SALMA corpus, we developed an end-to-end Word Sense Disambiguation system using Target Sense Verification. We used this system to evaluate three Target Sense Verification models available in the literature. Our best model achieved an accuracy with 84.2% using Modern and 78.7% using Ghani. The full corpus and the annotation tool are open-source and publicly available at

pdf bib
WojoodNER 2023: The First Arabic Named Entity Recognition Shared Task
Mustafa Jarrar | Muhammad Abdul-Mageed | Mohammed Khalilia | Bashar Talafha | AbdelRahim Elmadany | Nagham Hamad | Alaa’ Omar
Proceedings of ArabicNLP 2023

We present WojoodNER-2023, the first Arabic Named Entity Recognition (NER) Shared Task. The primary focus of WojoodNER 2023 is on Arabic NER, offering a novel NER datasets (i.e., Wojood) and the definition of subtasks designed to facilitate meaningful comparisons between different NER approaches. WojoodNER-2023 encompassed two Subtasks: FlatNER and NestedNER. A total of 45 unique teams registered for this shared task, with 11 of them actively participating in the test phase. Specifically, 11 teams participated in FlatNER, while 8 teams tackled NestedNER. The winning team achieved F1 score of 91.96 and 93.73 in FlatNER and NestedNER respectively.


pdf bib
Wojood: Nested Arabic Named Entity Corpus and Recognition using BERT
Mustafa Jarrar | Mohammed Khalilia | Sana Ghanem
Proceedings of the Thirteenth Language Resources and Evaluation Conference

This paper presents Wojood, a corpus for Arabic nested Named Entity Recognition (NER). Nested entities occur when one entity mention is embedded inside another entity mention. Wojood consists of about 550K Modern Standard Arabic (MSA) and dialect tokens that are manually annotated with 21 entity types including person, organization, location, event and date. More importantly, the corpus is annotated with nested entities instead of the more common flat annotations. The data contains about 75K entities and 22.5% of which are nested. The inter-annotator evaluation of the corpus demonstrated a strong agreement with Cohen’s Kappa of 0.979 and an F1-score of 0.976. To validate our data, we used the corpus to train a nested NER model based on multi-task learning using the pre-trained AraBERT (Arabic BERT). The model achieved an overall micro F1-score of 0.884. Our corpus, the annotation guidelines, the source code and the pre-trained model are publicly available.


pdf bib
Joint Entity Extraction and Assertion Detection for Clinical Text
Parminder Bhatia | Busra Celikkaya | Mohammed Khalilia
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Negative medical findings are prevalent in clinical reports, yet discriminating them from positive findings remains a challenging task for in-formation extraction. Most of the existing systems treat this task as a pipeline of two separate tasks, i.e., named entity recognition (NER)and rule-based negation detection. We consider this as a multi-task problem and present a novel end-to-end neural model to jointly extract entities and negations. We extend a standard hierarchical encoder-decoder NER model and first adopt a shared encoder followed by separate decoders for the two tasks. This architecture performs considerably better than the previous rule-based and machine learning-based systems. To overcome the problem of increased parameter size especially for low-resource settings, we propose the Conditional Softmax Shared Decoder architecture which achieves state-of-art results for NER and negation detection on the 2010 i2b2/VA challenge dataset and a proprietary de-identified clinical dataset.