2024
pdf
bib
abs
DataNarrative: Automated Data-Driven Storytelling with Visualizations and Texts
Mohammed Saidul Islam
|
Md Tahmid Rahman Laskar
|
Md Rizwan Parvez
|
Enamul Hoque
|
Shafiq Joty
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Data-driven storytelling is a powerful method for conveying insights by combining narrative techniques with visualizations and text. These stories integrate visual aids, such as highlighted bars and lines in charts, along with textual annotations explaining insights. However, creating such stories requires a deep understanding of the data and meticulous narrative planning, often necessitating human intervention, which can be time-consuming and mentally taxing. While Large Language Models (LLMs) excel in various NLP tasks, their ability to generate coherent and comprehensive data stories remains underexplored. In this work, we introduce a novel task for data story generation and a benchmark containing 1,449 stories from diverse sources. To address the challenges of crafting coherent data stories, we propose a multi-agent framework employing two LLM agents designed to replicate the human storytelling process: one for understanding and describing the data (Reflection), generating the outline, and narration, and another for verification at each intermediary step. While our agentic framework generally outperforms non-agentic counterparts in both model-based and human evaluations, the results also reveal unique challenges in data story generation.
pdf
bib
abs
Are Large Vision Language Models up to the Challenge of Chart Comprehension and Reasoning
Mohammed Saidul Islam
|
Raian Rahman
|
Ahmed Masry
|
Md Tahmid Rahman Laskar
|
Mir Tafseer Nayeem
|
Enamul Hoque
Findings of the Association for Computational Linguistics: EMNLP 2024
Natural language is a powerful complementary modality of communication for data visualizations, such as bar and line charts. To facilitate chart-based reasoning using natural language, various downstream tasks have been introduced recently such as chart question answering, chart summarization, and fact-checking with charts. These tasks pose a unique challenge, demanding both vision-language reasoning and a nuanced understanding of chart data tables, visual encodings, and natural language instructions. Despite the recent success of Large Language Models (LLMs) across diverse NLP tasks, their abilities and limitations in the realm of data visualization remain under-explored, possibly due to their lack of multi-modal capabilities. To bridge the gap, this paper presents one of the first comprehensive evaluations of the recently developed large vision language models (LVLMs) for chart understanding and reasoning tasks. Our evaluation includes a comprehensive assessment of both closed and open-sourced LVLMs across five major chart reasoning tasks. Furthermore, we perform a qualitative evaluation of LVLMs’ performance on a diverse range of charts, aiming to provide a thorough analysis. Our findings reveal that while LVLMs demonstrate impressive abilities in generating fluent texts covering high-level data insights, they also encounter common problems like hallucinations, factual errors, and data bias. We highlight the key strengths and limitations of LVLMs in chart comprehension tasks, offering insights for future research
pdf
bib
abs
BenLLM-Eval: A Comprehensive Evaluation into the Potentials and Pitfalls of Large Language Models on Bengali NLP
Mohsinul Kabir
|
Mohammed Saidul Islam
|
Md Tahmid Rahman Laskar
|
Mir Tafseer Nayeem
|
M Saiful Bari
|
Enamul Hoque
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Large Language Models (LLMs) have emerged as one of the most important breakthroughs in natural language processing (NLP) for their impressive skills in language generation and other language-specific tasks. Though LLMs have been evaluated in various tasks, mostly in English, they have not yet undergone thorough evaluation in under-resourced languages such as Bengali (Bangla). To this end, this paper introduces BenLLM-Eval, which consists of a comprehensive evaluation of LLMs to benchmark their performance in the low-resourced Bangla language. In this regard, we select various important and diverse Bangla NLP tasks, such as text summarization, question answering, paraphrasing, natural language inference, text classification, and sentiment analysis for zero-shot evaluation of popular LLMs, namely, ChatGPT, LLaMA-2, and Claude-2. Our experimental results demonstrate that while in some Bangla NLP tasks, zero-shot LLMs could achieve performance on par, or even better than current SOTA fine-tuned models; in most tasks, their performance is quite poor (with the performance of open-source LLMs like LLaMA-2 being significantly bad) in comparison to the current SOTA results. Therefore, it calls for further efforts to develop a better understanding of LLMs in low-resource languages like Bangla.
2022
pdf
bib
abs
BanglaRQA: A Benchmark Dataset for Under-resourced Bangla Language Reading Comprehension-based Question Answering with Diverse Question-Answer Types
Syed Mohammed Sartaj Ekram
|
Adham Arik Rahman
|
Md. Sajid Altaf
|
Mohammed Saidul Islam
|
Mehrab Mustafy Rahman
|
Md Mezbaur Rahman
|
Md Azam Hossain
|
Abu Raihan Mostofa Kamal
Findings of the Association for Computational Linguistics: EMNLP 2022
High-resource languages, such as English, have access to a plethora of datasets with various question-answer types resembling real-world reading comprehension. However, there is a severe lack of diverse and comprehensive question-answering datasets in under-resourced languages like Bangla. The ones available are either translated versions of English datasets with a niche answer format or created by human annotations focusing on a specific domain, question type, or answer type. To address these limitations, this paper introduces BanglaRQA, a reading comprehension-based Bangla question-answering dataset with various question-answer types. BanglaRQA consists of 3,000 context passages and 14,889 question-answer pairs created from those passages. The dataset comprises answerable and unanswerable questions covering four unique categories of questions and three types of answers. In addition, this paper also implemented four different Transformer models for question-answering on the proposed dataset. The best-performing model achieved an overall 62.42% EM and 78.11% F1 score. However, detailed analyses showed that the performance varies across question-answer types, leaving room for substantial improvement of the model performance. Furthermore, we demonstrated the effectiveness of BanglaRQA as a training resource by showing strong results on the bn_squad dataset. Therefore, BanglaRQA has the potential to contribute to the advancement of future research by enhancing the capability of language models. The dataset and codes are available at https://github.com/sartajekram419/BanglaRQA