Moniba Keymanesh
2022
What Makes Data-to-Text Generation Hard for Pretrained Language Models?
Moniba Keymanesh
|
Adrian Benton
|
Mark Dredze
Proceedings of the 2nd Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)
Expressing natural language descriptions of structured facts or relations – data-to-text generation (D2T) – increases the accessibility of structured knowledge repositories. Previous work shows that pre-trained language models (PLMs) perform remarkably well on this task after fine-tuning on a significant amount of task-specific training data. On the other hand, while auto-regressive PLMs can generalize from a few task examples, their efficacy at D2T is largely unexplored. Furthermore, we have an incomplete understanding of the limits of PLMs on D2T. In this work, we conduct an empirical study of both fine-tuned and auto-regressive PLMs on the DART multi-domain D2T dataset. We consider their performance as a function of the amount of task-specific data and how the data is incorporated into the models: zero and few-shot learning, and fine-tuning of model weights. In addition, we probe the limits of PLMs by measuring performance on subsets of the evaluation data: novel predicates and abstractive test examples. To improve the performance on these subsets, we investigate two techniques: providing predicate descriptions in the context and re-ranking generated candidates by information reflected in the source. Finally, we conduct a human evaluation of model errors and show that D2T generation tasks would benefit from datasets with more careful manual curation.
2020
Interpretable Multi-headed Attention for Abstractive Summarization at Controllable Lengths
Ritesh Sarkhel
|
Moniba Keymanesh
|
Arnab Nandi
|
Srinivasan Parthasarathy
Proceedings of the 28th International Conference on Computational Linguistics
Abstractive summarization at controllable lengths is a challenging task in natural language processing. It is even more challenging for domains where limited training data is available or scenarios in which the length of the summary is not known beforehand. At the same time, when it comes to trusting machine-generated summaries, explaining how a summary was constructed in human-understandable terms may be critical. We propose Multi-level Summarizer (MLS), a supervised method to construct abstractive summaries of a text document at controllable lengths. The key enabler of our method is an interpretable multi-headed attention mechanism that computes attention distribution over an input document using an array of timestep independent semantic kernels. Each kernel optimizes a human-interpretable syntactic or semantic property. Exhaustive experiments on two low-resource datasets in English show that MLS outperforms strong baselines by up to 14.70% in the METEOR score. Human evaluation of the summaries also suggests that they capture the key concepts of the document at various length-budgets.