Mor Geva


2024

pdf bib
A Chain-of-Thought Is as Strong as Its Weakest Link: A Benchmark for Verifiers of Reasoning Chains
Alon Jacovi | Yonatan Bitton | Bernd Bohnet | Jonathan Herzig | Or Honovich | Michael Tseng | Michael Collins | Roee Aharoni | Mor Geva
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Prompting language models to provide step-by-step answers (e.g., “Chain-of-Thought”) is the prominent approach for complex reasoning tasks, where more accurate reasoning chains typically improve downstream task performance. Recent literature discusses automatic methods to verify reasoning to evaluate and improve their correctness. However, no fine-grained step-level datasets are available to enable thorough evaluation of such verification methods, hindering progress in this direction. We introduce REVEAL: Reasoning Verification Evaluation, a dataset to benchmark automatic verifiers of complex Chain-of-Thought reasoning in open-domain question-answering settings. REVEAL includes comprehensive labels for the relevance, attribution to evidence passages, and logical correctness of each reasoning step in a language model’s answer, across a variety of datasets and state-of-the-art language models. Evaluation on REVEAL shows that verifiers struggle at verifying reasoning chains - in particular, verifying logical correctness and detecting contradictions. Available at https://reveal-dataset.github.io/ .

pdf bib
The Hidden Space of Transformer Language Adapters
Jesujoba Alabi | Marius Mosbach | Matan Eyal | Dietrich Klakow | Mor Geva
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We analyze the operation of transformer language adapters, which are small modules trained on top of a frozen language model to adapt its predictions to new target languages. We show that adapted predictions mostly evolve in the source language the model was trained on, while the target language becomes pronounced only in the very last layers of the model. Moreover, the adaptation process is gradual and distributed across layers, where it is possible to skip small groups of adapters without decreasing adaptation performance. Last, we show that adapters operate on top of the model’s frozen representation space while largely preserving its structure, rather than on an isolated subspace. Our findings provide a deeper view into the adaptation process of language models to new languages, showcasing the constraints imposed on it by the underlying model and introduces practical implications to enhance its efficiency.

pdf bib
Narrowing the Knowledge Evaluation Gap: Open-Domain Question Answering with Multi-Granularity Answers
Gal Yona | Roee Aharoni | Mor Geva
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Factual questions typically can be answered correctly at different levels of granularity. For example, both “August 4, 1961” and “1961” are correct answers to the question “When was Barack Obama born?”. Standard question answering (QA) evaluation protocols, however, do not explicitly take this into account and compare a predicted answer against answers of a single granularity level. In this work, we propose GRANOLA QA, a novel evaluation setting where a predicted answer is evaluated in terms of accuracy and informativeness against a set of multi-granularity answers. We present a simple methodology for enriching existing datasets with multi-granularity answers, and create GRANOLA-EQ, a multi-granularity version of the EntityQuestions dataset. We evaluate a range of decoding methods on GRANOLA-EQ, including a new algorithm, called Decoding with Response Aggregation (DRAG), that is geared towards aligning the response granularity with the model’s uncertainty. Our experiments show that large language models with standard decoding tend to generate specific answers, which are often incorrect. In contrast, when evaluated on multi-granularity answers, DRAG yields a nearly 20 point increase in accuracy on average, which further increases for rare entities. Overall, this reveals that standard evaluation and decoding schemes may significantly underestimate the knowledge encapsulated in LMs.

pdf bib
RAVEL: Evaluating Interpretability Methods on Disentangling Language Model Representations
Jing Huang | Zhengxuan Wu | Christopher Potts | Mor Geva | Atticus Geiger
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Individual neurons participate in the representation of multiple high-level concepts. To what extent can different interpretability methods successfully disentangle these roles? To help address this question, we introduce RAVEL (Resolving Attribute-Value Entanglements in Language Models), a dataset that enables tightly controlled, quantitative comparisons between a variety of existing interpretability methods. We use the resulting conceptual framework to define the new method of Multi-task Distributed Alignment Search (MDAS), which allows us to find distributed representations satisfying multiple causal criteria. With Llama2-7B as the target language model, MDAS achieves state-of-the-art results on RAVEL, demonstrating the importance of going beyond neuron-level analyses to identify features distributed across activations. We release our benchmark at https://github.com/explanare/ravel.

pdf bib
Do Large Language Models Latently Perform Multi-Hop Reasoning?
Sohee Yang | Elena Gribovskaya | Nora Kassner | Mor Geva | Sebastian Riedel
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We study whether Large Language Models (LLMs) latently perform multi-hop reasoning with complex prompts such as “The mother of the singer of ‘Superstition’ is”. We look for evidence of a latent reasoning pathway where an LLM (1) latently identifies “the singer of ‘Superstition’” as Stevie Wonder, the bridge entity, and (2) uses its knowledge of Stevie Wonder’s mother to complete the prompt. We analyze these two hops individually and consider their co-occurrence as indicative of latent multi-hop reasoning. For the first hop, we test if changing the prompt to indirectly mention the bridge entity instead of any other entity increases the LLM’s internal recall of the bridge entity. For the second hop, we test if increasing this recall causes the LLM to better utilize what it knows about the bridge entity. We find strong evidence of latent multi-hop reasoning for the prompts of certain relation types, with the reasoning pathway used in more than 80% of the prompts. However, the utilization is highly contextual, varying across different types of prompts. Also, on average, the evidence for the second hop and the full multi-hop traversal is rather moderate and only substantial for the first hop. Moreover, we find a clear scaling trend with increasing model size for the first hop of reasoning but not for the second hop. Our experimental findings suggest potential challenges and opportunities for future development and applications of LLMs.

pdf bib
Backward Lens: Projecting Language Model Gradients into the Vocabulary Space
Shahar Katz | Yonatan Belinkov | Mor Geva | Lior Wolf
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Understanding how Transformer-based Language Models (LMs) learn and recall information is a key goal of the deep learning community. Recent interpretability methods project weights and hidden states obtained from the forward pass to the models’ vocabularies, helping to uncover how information flows within LMs. In this work, we extend this methodology to LMs’ backward pass and gradients. We first prove that a gradient matrix can be cast as a low-rank linear combination of its forward and backward passes’ inputs. We then develop methods to project these gradients into vocabulary items and explore the mechanics of how new information is stored in the LMs’ neurons.

pdf bib
From Insights to Actions: The Impact of Interpretability and Analysis Research on NLP
Marius Mosbach | Vagrant Gautam | Tomás Vergara Browne | Dietrich Klakow | Mor Geva
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Interpretability and analysis (IA) research is a growing subfield within NLP with the goal of developing a deeper understanding of the behavior or inner workings of NLP systems and methods. Despite growing interest in the subfield, a criticism of this work is that it lacks actionable insights and therefore has little impact on NLP. In this paper, we seek to quantify the impact of IA research on the broader field of NLP. We approach this with a mixed-methods analysis of: (1) a citation graph of 185K+ papers built from all papers published at ACL and EMNLP conferences from 2018 to 2023, and their references and citations, and (2) a survey of 138 members of the NLP community. Our quantitative results show that IA work is well-cited outside of IA, and central in the NLP citation graph. Through qualitative analysis of survey responses and manual annotation of 556 papers, we find that NLP researchers build on findings from IA work and perceive it as important for progress in NLP, multiple subfields, and rely on its findings and terminology for their own work. Many novel methods are proposed based on IA findings and highly influenced by them, but highly influential non-IA work cites IA findings without being driven by them. We end by summarizing what is missing in IA work today and provide a call to action, to pave the way for a more impactful future of IA research.

pdf bib
Estimating Knowledge in Large Language Models Without Generating a Single Token
Daniela Gottesman | Mor Geva
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

pdf bib
Can Large Language Models Faithfully Express Their Intrinsic Uncertainty in Words?
Gal Yona | Roee Aharoni | Mor Geva
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

We posit that large language models (LLMs) should be capable of expressing their intrinsic uncertainty in natural language. For example, if the LLM is equally likely to output two contradicting answers to the same question, then its generated response should reflect this uncertainty by hedging its answer (e.g., “I’m not sure, but I think...”). We formalize faithful response uncertainty based on the gap between the model’s intrinsic confidence in the assertions it makes and the decisiveness by which they are conveyed. This example-level metric reliably indicates whether the model reflects its uncertainty, as it penalizes both excessive and insufficient hedging. We evaluate a variety of aligned LLMs at faithfully conveying uncertainty on several knowledge-intensive question answering tasks. Our results provide strong evidence that modern LLMs are poor at faithfully conveying their uncertainty, and that better alignment is necessary to improve their trustworthiness.

pdf bib
Hopping Too Late: Exploring the Limitations of Large Language Models on Multi-Hop Queries
Eden Biran | Daniela Gottesman | Sohee Yang | Mor Geva | Amir Globerson
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) can solve complex multi-step problems, but little is known about how these computations are implemented internally. Motivated by this, we study how LLMs answer multi-hop queries such as “The spouse of the performer of Imagine is”. These queries require two information extraction steps: a latent one for resolving the first hop (“the performer of Imagine”) into the bridge entity (John Lennon), and another for resolving the second hop (“the spouse of John Lennon”) into the target entity (Yoko Ono). Understanding how the latent step is computed internally is key to understanding the overall computation. By carefully analyzing the internal computations of transformer-based LLMs, we discover that the bridge entity is resolved in the early layers of the model. Then, only after this resolution, the two-hop query is solved in the later layers. Because the second hop commences in later layers, there could be cases where these layers no longer encode the necessary knowledge for correctly predicting the answer. Motivated by this, we propose a novel “back-patching” analysis method whereby a hidden representation from a later layer is patched back to an earlier layer. We find that in up to 66% of previously incorrect cases there exists a back-patch that results in the correct generation of the answer, showing that the later layers indeed sometimes lack the needed functionality. Overall our methods and findings open further opportunities for understanding and improving latent reasoning in transformer-based LLMs.

pdf bib
Proceedings of the 1st Workshop on Towards Knowledgeable Language Models (KnowLLM 2024)
Sha Li | Manling Li | Michael JQ Zhang | Eunsol Choi | Mor Geva | Peter Hase | Heng Ji
Proceedings of the 1st Workshop on Towards Knowledgeable Language Models (KnowLLM 2024)

pdf bib
Jump to Conclusions: Short-Cutting Transformers with Linear Transformations
Alexander Yom Din | Taelin Karidi | Leshem Choshen | Mor Geva
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Transformer-based language models create hidden representations of their inputs at every layer, but only use final-layer representations for prediction. This obscures the internal decision-making process of the model and the utility of its intermediate representations. One way to elucidate this is to cast the hidden representations as final representations, bypassing the transformer computation in-between. In this work, we suggest a simple method for such casting, using linear transformations. This approximation far exceeds the prevailing practice of inspecting hidden representations from all layers, in the space of the final layer. Moreover, in the context of language modeling, our method produces more accurate predictions from hidden layers, across various model scales, architectures, and data distributions. This allows “peeking” into intermediate representations, showing that GPT-2 and BERT often predict the final output already in early layers. We then demonstrate the practicality of our method to recent early exit strategies, showing that when aiming, for example, at retention of 95% accuracy, our approach saves additional 7.9% layers for GPT-2 and 5.4% layers for BERT. Last, we extend our method to linearly approximate sub-modules, finding that attention is most tolerant to this change. Our code and learned mappings are publicly available at https://github.com/sashayd/mat.

pdf bib
Evaluating the Ripple Effects of Knowledge Editing in Language Models
Roi Cohen | Eden Biran | Ori Yoran | Amir Globerson | Mor Geva
Transactions of the Association for Computational Linguistics, Volume 12

Modern language models capture a large body of factual knowledge. However, some facts can be incorrectly induced or become obsolete over time, resulting in factually incorrect generations. This has led to the development of various editing methods that allow updating facts encoded by the model. Evaluation of these methods has primarily focused on testing whether an individual fact has been successfully injected, and if similar predictions for other subjects have not changed. Here we argue that such evaluation is limited, since injecting one fact (e.g., “Jack Depp is the son of Johnny Depp”) introduces a “ripple effect” in the form of additional facts that the model needs to update (e.g., “Jack Depp is the sibling of Lily-Rose Depp”). To address this, we propose novel evaluation criteria that consider the implications of an edit on related facts. Using these criteria, we then construct RippleEdits, a diagnostic benchmark of 5K factual edits, capturing various types of ripple effects. We evaluate prominent editing methods on RippleEdits, showing that they fail to introduce consistent changes in the model’s knowledge. In addition, we find that a simple in-context editing baseline obtains the best scores on our benchmark, suggesting a promising research direction for model editing.1

2023

pdf bib
Analyzing Transformers in Embedding Space
Guy Dar | Mor Geva | Ankit Gupta | Jonathan Berant
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Understanding Transformer-based models has attracted significant attention, as they lie at the heart of recent technological advances across machine learning. While most interpretability methods rely on running models over inputs, recent work has shown that a zero-pass approach, where parameters are interpreted directly without a forward/backward pass is feasible for some Transformer parameters, and for two-layer attention networks. In this work, we present a theoretical analysis where all parameters of a trained Transformer are interpreted by projecting them into the embedding space, that is, the space of vocabulary items they operate on. We derive a simple theoretical framework to support our arguments and provide ample evidence for its validity. First, an empirical analysis showing that parameters of both pretrained and fine-tuned models can be interpreted in embedding space. Second, we present two applications of our framework: (a) aligning the parameters of different models that share a vocabulary, and (b) constructing a classifier without training by “translating” the parameters of a fine-tuned classifier to parameters of a different model that was only pretrained. Overall, our findings open the door to interpretation methods that, at least in part, abstract away from model specifics and operate in the embedding space only.

pdf bib
Complex Reasoning in Natural Language
Wenting Zhao | Mor Geva | Bill Yuchen Lin | Michihiro Yasunaga | Aman Madaan | Tao Yu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 6: Tutorial Abstracts)

Teaching machines to reason over texts has been a long-standing goal of natural language processing (NLP). To this end, researchers have designed a diverse set of complex reasoning tasks that involve compositional reasoning, knowledge retrieval, grounding, commonsense reasoning, etc. A standard choice for building systems that perform a desired type of reasoning is to fine-tune a pretrained language model (LM) on specific downstream tasks. However, recent research has demonstrated that such a straightforward approach is often brittle. For example, Elazar et al. (2021) and Branco et al. (2021) show that, on question-answering (QA) tasks, similar performance can be achieved with questions removed from the inputs. Min et al. (2019), Chen and Durrett (2019), and Tang et al. (2021) show that models trained on multi-hop QA do not generalize to answer single-hop questions. The reasoning capabilities of these models thus remain at a surface level, i.e., exploiting data patterns. Consequently, augmenting LMs with techniques that make them robust and effective becomes an active research area. We will start the tutorial by providing an overview of complex reasoning tasks where the standard application of pretrained language models fails. This tutorial then reviews recent promising directions for tackling these tasks. Specifically, we focus on the following groups of approaches that explicitly consider problem structures: (1) knowledge-augmented methods, where the knowledge is either incorporated during fine-tuning or pretraining; (2) few-shot prompting methods, which effectively guide the models to follow instructions; (3) neuro-symbolic methods, which produce explicit intermediate representations; and, (4) rationale-based methods, one of the most popular forms of the neuro-symbolic methods, which highlight subsets of input as explanations for individual model predictions.

pdf bib
Understanding Transformer Memorization Recall Through Idioms
Adi Haviv | Ido Cohen | Jacob Gidron | Roei Schuster | Yoav Goldberg | Mor Geva
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

To produce accurate predictions, language models (LMs) must balance between generalization and memorization. Yet, little is known about the mechanism by which transformer LMs employ their memorization capacity. When does a model decide to output a memorized phrase, and how is this phrase then retrieved from memory? In this work, we offer the first methodological framework for probing and characterizing recall of memorized sequences in transformer LMs. First, we lay out criteria for detecting model inputs that trigger memory recall, and propose idioms as inputs that typically fulfill these criteria. Next, we construct a dataset of English idioms and use it to compare model behavior on memorized vs. non-memorized inputs. Specifically, we analyze the internal prediction construction process by interpreting the model’s hidden representations as a gradual refinement of the output probability distribution. We find that across different model sizes and architectures, memorized predictions are a two-step process: early layers promote the predicted token to the top of the output distribution, and upper layers increase model confidence. This suggests that memorized information is stored and retrieved in the early layers of the network. Last, we demonstrate the utility of our methodology beyond idioms in memorized factual statements. Overall, our work makes a first step towards understanding memory recall, and provides a methodological basis for future studies of transformer memorization.

pdf bib
Don’t Blame the Annotator: Bias Already Starts in the Annotation Instructions
Mihir Parmar | Swaroop Mishra | Mor Geva | Chitta Baral
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

In recent years, progress in NLU has been driven by benchmarks. These benchmarks are typically collected by crowdsourcing, where annotators write examples based on annotation instructions crafted by dataset creators. In this work, we hypothesize that annotators pick up on patterns in the crowdsourcing instructions, which bias them to write many similar examples that are then over-represented in the collected data. We study this form of bias, termed instruction bias, in 14 recent NLU benchmarks, showing that instruction examples often exhibit concrete patterns, which are propagated by crowdworkers to the collected data. This extends previous work (Geva et al., 2019) and raises a new concern of whether we are modeling the dataset creator’s instructions, rather than the task. Through a series of experiments, we show that, indeed, instruction bias can lead to overestimation of model performance, and that models struggle to generalize beyond biases originating in the crowdsourcing instructions. We further analyze the influence of instruction bias in terms of pattern frequency and model size, and derive concrete recommendations for creating future NLU benchmarks.

pdf bib
CRoW: Benchmarking Commonsense Reasoning in Real-World Tasks
Mete Ismayilzada | Debjit Paul | Syrielle Montariol | Mor Geva | Antoine Bosselut
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Recent efforts in natural language processing (NLP) commonsense reasoning research have yielded a considerable number of new datasets and benchmarks. However, most of these datasets formulate commonsense reasoning challenges in artificial scenarios that are not reflective of the tasks which real-world NLP systems are designed to solve. In this work, we present CRoW, a manually-curated, multi-task benchmark that evaluates the ability of models to apply commonsense reasoning in the context of six real-world NLP tasks. CRoW is constructed using a multi-stage data collection pipeline that rewrites examples from existing datasets using commonsense-violating perturbations. We use CRoW to study how NLP systems perform across different dimensions of commonsense knowledge, such as physical, temporal, and social reasoning. We find a significant performance gap when NLP systems are evaluated on CRoW compared to humans, showcasing that commonsense reasoning is far from being solved in real-world task settings. We make our dataset and leaderboard available to the research community.

pdf bib
Dissecting Recall of Factual Associations in Auto-Regressive Language Models
Mor Geva | Jasmijn Bastings | Katja Filippova | Amir Globerson
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Transformer-based language models (LMs) are known to capture factual knowledge in their parameters. While previous work looked into where factual associations are stored, only little is known about how they are retrieved internally during inference. We investigate this question through the lens of information flow. Given a subject-relation query, we study how the model aggregates information about the subject and relation to predict the correct attribute. With interventions on attention edges, we first identify two critical points where information propagates to the prediction: one from the relation positions followed by another from the subject positions. Next, by analyzing the information at these points, we unveil a three-step internal mechanism for attribute extraction. First, the representation at the last-subject position goes through an enrichment process, driven by the early MLP sublayers, to encode many subject-related attributes. Second, information from the relation propagates to the prediction. Third, the prediction representation “queries” the enriched subject to extract the attribute. Perhaps surprisingly, this extraction is typically done via attention heads, which often encode subject-attribute mappings in their parameters. Overall, our findings introduce a comprehensive view of how factual associations are stored and extracted internally in LMs, facilitating future research on knowledge localization and editing.

pdf bib
LM vs LM: Detecting Factual Errors via Cross Examination
Roi Cohen | May Hamri | Mor Geva | Amir Globerson
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

A prominent weakness of modern language models (LMs) is their tendency to generate factually incorrect text, which hinders their usability. A natural question is whether such factual errors can be detected automatically. Inspired by truth-seeking mechanisms in law, we propose a factuality evaluation framework for LMs that is based on cross-examination. Our key idea is that an incorrect claim is likely to result in inconsistency with other claims that the model generates. To discover such inconsistencies, we facilitate a multi-turn interaction between the LM that generated the claim and another LM (acting as an examiner) which introduces questions to discover inconsistencies. We empirically evaluate our method on factual claims made by multiple recent LMs on four benchmarks, finding that it outperforms existing methods and baselines, often by a large gap. Our results demonstrate the potential of using interacting LMs for capturing factual errors.

pdf bib
Crawling The Internal Knowledge-Base of Language Models
Roi Cohen | Mor Geva | Jonathan Berant | Amir Globerson
Findings of the Association for Computational Linguistics: EACL 2023

Language models are trained on large volumes of text, and as a result their parameters might contain a significant body of factual knowledge. Any downstream task performed by these models implicitly builds on these facts, and thus it is highly desirable to have means for representing this body of knowledge in an interpretable way. However, there is currently no mechanism for such a representation. Here, we propose to address this goal by extracting a knowledge-graph of facts from a given language model. We describe a procedure for “crawling” the internal knowledge-base of a language model. Specifically, given a seed entity, we expand a knowledge-graph around it. The crawling procedure is decomposed into sub-tasks, realized through specially designed prompts that control for both precision (i.e., that no wrong facts are generated) and recall (i.e., the number of facts generated). We evaluate our approach on graphs crawled starting from dozens of seed entities, and show it yields high precision graphs (82-92%), while emitting a reasonable number of facts per entity.

pdf bib
In-Context Learning Creates Task Vectors
Roee Hendel | Mor Geva | Amir Globerson
Findings of the Association for Computational Linguistics: EMNLP 2023

In-context learning (ICL) in Large Language Models (LLMs) has emerged as a powerful new learning paradigm. However, its underlying mechanism is still not well understood. In particular, it is challenging to map it to the “standard’ machine learning framework, where one uses a training set S to find a best-fitting function f(x) in some hypothesis class. Here we make progress on this problem by showing that the functions learned by ICL often have a very simple structure: they correspond to the transformer LLM whose only inputs are the query x and a single “task vector’ calculated from the training set. Thus, ICL can be seen as compressing S into a single task vector 𝜃(S) and then using this task vector to modulate the transformer to produce the output. We support the above claim via comprehensive experiments across a range of models and tasks.

pdf bib
A Comprehensive Evaluation of Tool-Assisted Generation Strategies
Alon Jacovi | Avi Caciularu | Jonathan Herzig | Roee Aharoni | Bernd Bohnet | Mor Geva
Findings of the Association for Computational Linguistics: EMNLP 2023

A growing area of research investigates augmenting language models with tools (e.g., search engines, calculators) to overcome their shortcomings (e.g., missing or incorrect knowledge, incorrect logical inferences). Various few-shot tool-usage strategies have been proposed. However, there is no systematic and fair comparison across different strategies, or between these strategies and strong baselines that do not leverage tools. We conduct an extensive empirical analysis, finding that (1) across various datasets, example difficulty levels, and models, strong no-tool baselines are competitive to tool-assisted strategies, implying that effectively using tools with in-context demonstrations is a difficult unsolved problem; (2) for knowledge-retrieval tasks, strategies that *refine* incorrect outputs with tools outperform strategies that retrieve relevant information *ahead of* or *during generation*; (3) tool-assisted strategies are expensive in the number of tokens they require to work—incurring additional costs by orders of magnitude—which does not translate into significant improvement in performance. Overall, our findings suggest that few-shot tool integration is still an open challenge, emphasizing the need for comprehensive evaluations of future strategies to accurately assess their *benefits* and *costs*.

2022

pdf bib
Transformer Feed-Forward Layers Build Predictions by Promoting Concepts in the Vocabulary Space
Mor Geva | Avi Caciularu | Kevin Wang | Yoav Goldberg
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Transformer-based language models (LMs) are at the core of modern NLP, but their internal prediction construction process is opaque and largely not understood. In this work, we make a substantial step towards unveiling this underlying prediction process, by reverse-engineering the operation of the feed-forward network (FFN) layers, one of the building blocks of transformer models. We view the token representation as a changing distribution over the vocabulary, and the output from each FFN layer as an additive update to that distribution. Then, we analyze the FFN updates in the vocabulary space, showing that each update can be decomposed to sub-updates corresponding to single FFN parameter vectors, each promoting concepts that are often human-interpretable. We then leverage these findings for controlling LM predictions, where we reduce the toxicity of GPT2 by almost 50%, and for improving computation efficiency with a simple early exit rule, saving 20% of computation on average.

pdf bib
SCROLLS: Standardized CompaRison Over Long Language Sequences
Uri Shaham | Elad Segal | Maor Ivgi | Avia Efrat | Ori Yoran | Adi Haviv | Ankit Gupta | Wenhan Xiong | Mor Geva | Jonathan Berant | Omer Levy
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

NLP benchmarks have largely focused on short texts, such as sentences and paragraphs, even though long texts comprise a considerable amount of natural language in the wild. We introduce SCROLLS, a suite of tasks that require reasoning over long texts. We examine existing long-text datasets, and handpick ones where the text is naturally long, while prioritizing tasks that involve synthesizing information across the input. SCROLLS contains summarization, question answering, and natural language inference tasks, covering multiple domains, including literature, science, business, and entertainment. Initial baselines, including Longformer Encoder-Decoder, indicate that there is ample room for improvement on SCROLLS. We make all datasets available in a unified text-to-text format and host a live leaderboard to facilitate research on model architecture and pretraining methods.

pdf bib
LM-Debugger: An Interactive Tool for Inspection and Intervention in Transformer-Based Language Models
Mor Geva | Avi Caciularu | Guy Dar | Paul Roit | Shoval Sadde | Micah Shlain | Bar Tamir | Yoav Goldberg
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

The opaque nature and unexplained behavior of transformer-based language models (LMs) have spurred a wide interest in interpreting their predictions. However, current interpretation methods mostly focus on probing models from outside, executing behavioral tests, and analyzing salience input features, while the internal prediction construction process is largely not understood. In this work, we introduce LM-Debugger, an interactive debugger tool for transformer-based LMs, which provides a fine-grained interpretation of the model’s internal prediction process, as well as a powerful framework for intervening in LM behavior. For its backbone, LM-Debugger relies on a recent method that interprets the inner token representations and their updates by the feed-forward layers in the vocabulary space. We demonstrate the utility of LM-Debugger for single-prediction debugging, by inspecting the internal disambiguation process done by GPT2. Moreover, we show how easily LM-Debugger allows to shift model behavior in a direction of the user’s choice, by identifying a few vectors in the network and inducing effective interventions to the prediction process. We release LM-Debugger as an open-source tool and a demo over GPT2 models.

pdf bib
Inferring Implicit Relations in Complex Questions with Language Models
Uri Katz | Mor Geva | Jonathan Berant
Findings of the Association for Computational Linguistics: EMNLP 2022

A prominent challenge for modern language understanding systems is the ability to answer implicit reasoning questions, where the required reasoning steps for answering the question are not mentioned in the text explicitly. In this work, we investigate why current models struggle with implicit reasoning question answering (QA) tasks, by decoupling inference of reasoning steps from their execution.We define a new task of implicit relation inference and construct a benchmark, IMPLICITRELATIONS, where given a question, a model should output a list of concept-relation pairs, where the relations describe the implicit reasoning steps required for answering the question.Using IMPLICITRELATIONS, we evaluate models from the GPT-3 family and find that, while these models struggle on the implicit reasoning QA task, they often succeed at inferring implicit relations.This suggests that the challenge in implicit reasoning questions does not stem from the need to plan a reasoning strategy alone, but to do it while also retrieving and reasoning over relevant information.

pdf bib
Break, Perturb, Build: Automatic Perturbation of Reasoning Paths Through Question Decomposition
Mor Geva | Tomer Wolfson | Jonathan Berant
Transactions of the Association for Computational Linguistics, Volume 10

Recent efforts to create challenge benchmarks that test the abilities of natural language understanding models have largely depended on human annotations. In this work, we introduce the “Break, Perturb, Build” (BPB) framework for automatic reasoning-oriented perturbation of question-answer pairs. BPB represents a question by decomposing it into the reasoning steps that are required to answer it, symbolically perturbs the decomposition, and then generates new question-answer pairs. We demonstrate the effectiveness of BPB by creating evaluation sets for three reading comprehension (RC) benchmarks, generating thousands of high-quality examples without human intervention. We evaluate a range of RC models on our evaluation sets, which reveals large performance gaps on generated examples compared to the original data. Moreover, symbolic perturbations enable fine-grained analysis of the strengths and limitations of models. Last, augmenting the training data with examples generated by BPB helps close the performance gaps, without any drop on the original data distribution.

2021

pdf bib
Transformer Feed-Forward Layers Are Key-Value Memories
Mor Geva | Roei Schuster | Jonathan Berant | Omer Levy
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Feed-forward layers constitute two-thirds of a transformer model’s parameters, yet their role in the network remains under-explored. We show that feed-forward layers in transformer-based language models operate as key-value memories, where each key correlates with textual patterns in the training examples, and each value induces a distribution over the output vocabulary. Our experiments show that the learned patterns are human-interpretable, and that lower layers tend to capture shallow patterns, while upper layers learn more semantic ones. The values complement the keys’ input patterns by inducing output distributions that concentrate probability mass on tokens likely to appear immediately after each pattern, particularly in the upper layers. Finally, we demonstrate that the output of a feed-forward layer is a composition of its memories, which is subsequently refined throughout the model’s layers via residual connections to produce the final output distribution.

pdf bib
What’s in Your Head? Emergent Behaviour in Multi-Task Transformer Models
Mor Geva | Uri Katz | Aviv Ben-Arie | Jonathan Berant
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The primary paradigm for multi-task training in natural language processing is to represent the input with a shared pre-trained language model, and add a small, thin network (head) per task. Given an input, a target head is the head that is selected for outputting the final prediction. In this work, we examine the behaviour of non-target heads, that is, the output of heads when given input that belongs to a different task than the one they were trained for. We find that non-target heads exhibit emergent behaviour, which may either explain the target task, or generalize beyond their original task. For example, in a numerical reasoning task, a span extraction head extracts from the input the arguments to a computation that results in a number generated by a target generative head. In addition, a summarization head that is trained with a target question answering head, outputs query-based summaries when given a question and a context from which the answer is to be extracted. This emergent behaviour suggests that multi-task training leads to non-trivial extrapolation of skills, which can be harnessed for interpretability and generalization.

pdf bib
Did Aristotle Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies
Mor Geva | Daniel Khashabi | Elad Segal | Tushar Khot | Dan Roth | Jonathan Berant
Transactions of the Association for Computational Linguistics, Volume 9

A key limitation in current datasets for multi-hop reasoning is that the required steps for answering the question are mentioned in it explicitly. In this work, we introduce StrategyQA, a question answering (QA) benchmark where the required reasoning steps are implicit in the question, and should be inferred using a strategy. A fundamental challenge in this setup is how to elicit such creative questions from crowdsourcing workers, while covering a broad range of potential strategies. We propose a data collection procedure that combines term-based priming to inspire annotators, careful control over the annotator population, and adversarial filtering for eliminating reasoning shortcuts. Moreover, we annotate each question with (1) a decomposition into reasoning steps for answering it, and (2) Wikipedia paragraphs that contain the answers to each step. Overall, StrategyQA includes 2,780 examples, each consisting of a strategy question, its decomposition, and evidence paragraphs. Analysis shows that questions in StrategyQA are short, topic-diverse, and cover a wide range of strategies. Empirically, we show that humans perform well (87%) on this task, while our best baseline reaches an accuracy of ∼ 66%.

2020

pdf bib
Injecting Numerical Reasoning Skills into Language Models
Mor Geva | Ankit Gupta | Jonathan Berant
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Large pre-trained language models (LMs) are known to encode substantial amounts of linguistic information. However, high-level reasoning skills, such as numerical reasoning, are difficult to learn from a language-modeling objective only. Consequently, existing models for numerical reasoning have used specialized architectures with limited flexibility. In this work, we show that numerical reasoning is amenable to automatic data generation, and thus one can inject this skill into pre-trained LMs, by generating large amounts of data, and training in a multi-task setup. We show that pre-training our model, GenBERT, on this data, dramatically improves performance on DROP (49.3 –> 72.3 F1), reaching performance that matches state-of-the-art models of comparable size, while using a simple and general-purpose encoder-decoder architecture. Moreover, GenBERT generalizes well to math word problem datasets, while maintaining high performance on standard RC tasks. Our approach provides a general recipe for injecting skills into large pre-trained LMs, whenever the skill is amenable to automatic data augmentation.

pdf bib
Break It Down: A Question Understanding Benchmark
Tomer Wolfson | Mor Geva | Ankit Gupta | Matt Gardner | Yoav Goldberg | Daniel Deutch | Jonathan Berant
Transactions of the Association for Computational Linguistics, Volume 8

Understanding natural language questions entails the ability to break down a question into the requisite steps for computing its answer. In this work, we introduce a Question Decomposition Meaning Representation (QDMR) for questions. QDMR constitutes the ordered list of steps, expressed through natural language, that are necessary for answering a question. We develop a crowdsourcing pipeline, showing that quality QDMRs can be annotated at scale, and release the Break dataset, containing over 83K pairs of questions and their QDMRs. We demonstrate the utility of QDMR by showing that (a) it can be used to improve open-domain question answering on the HotpotQA dataset, (b) it can be deterministically converted to a pseudo-SQL formal language, which can alleviate annotation in semantic parsing applications. Last, we use Break to train a sequence-to-sequence model with copying that parses questions into QDMR structures, and show that it substantially outperforms several natural baselines.

2019

pdf bib
Are We Modeling the Task or the Annotator? An Investigation of Annotator Bias in Natural Language Understanding Datasets
Mor Geva | Yoav Goldberg | Jonathan Berant
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Crowdsourcing has been the prevalent paradigm for creating natural language understanding datasets in recent years. A common crowdsourcing practice is to recruit a small number of high-quality workers, and have them massively generate examples. Having only a few workers generate the majority of examples raises concerns about data diversity, especially when workers freely generate sentences. In this paper, we perform a series of experiments showing these concerns are evident in three recent NLP datasets. We show that model performance improves when training with annotator identifiers as features, and that models are able to recognize the most productive annotators. Moreover, we show that often models do not generalize well to examples from annotators that did not contribute to the training set. Our findings suggest that annotator bias should be monitored during dataset creation, and that test set annotators should be disjoint from training set annotators.

pdf bib
DiscoFuse: A Large-Scale Dataset for Discourse-Based Sentence Fusion
Mor Geva | Eric Malmi | Idan Szpektor | Jonathan Berant
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Sentence fusion is the task of joining several independent sentences into a single coherent text. Current datasets for sentence fusion are small and insufficient for training modern neural models. In this paper, we propose a method for automatically-generating fusion examples from raw text and present DiscoFuse, a large scale dataset for discourse-based sentence fusion. We author a set of rules for identifying a diverse set of discourse phenomena in raw text, and decomposing the text into two independent sentences. We apply our approach on two document collections: Wikipedia and Sports articles, yielding 60 million fusion examples annotated with discourse information required to reconstruct the fused text. We develop a sequence-to-sequence model on DiscoFuse and thoroughly analyze its strengths and weaknesses with respect to the various discourse phenomena, using both automatic as well as human evaluation. Finally, we conduct transfer learning experiments with WebSplit, a recent dataset for text simplification. We show that pretraining on DiscoFuse substantially improves performance on WebSplit when viewed as a sentence fusion task.

2018

pdf bib
Learning to Search in Long Documents Using Document Structure
Mor Geva | Jonathan Berant
Proceedings of the 27th International Conference on Computational Linguistics

Reading comprehension models are based on recurrent neural networks that sequentially process the document tokens. As interest turns to answering more complex questions over longer documents, sequential reading of large portions of text becomes a substantial bottleneck. Inspired by how humans use document structure, we propose a novel framework for reading comprehension. We represent documents as trees, and model an agent that learns to interleave quick navigation through the document tree with more expensive answer extraction. To encourage exploration of the document tree, we propose a new algorithm, based on Deep Q-Network (DQN), which strategically samples tree nodes at training time. Empirically we find our algorithm improves question answering performance compared to DQN and a strong information-retrieval (IR) baseline, and that ensembling our model with the IR baseline results in further gains in performance.

2017

pdf bib
Evaluating Semantic Parsing against a Simple Web-based Question Answering Model
Alon Talmor | Mor Geva | Jonathan Berant
Proceedings of the 6th Joint Conference on Lexical and Computational Semantics (*SEM 2017)

Semantic parsing shines at analyzing complex natural language that involves composition and computation over multiple pieces of evidence. However, datasets for semantic parsing contain many factoid questions that can be answered from a single web document. In this paper, we propose to evaluate semantic parsing-based question answering models by comparing them to a question answering baseline that queries the web and extracts the answer only from web snippets, without access to the target knowledge-base. We investigate this approach on COMPLEXQUESTIONS, a dataset designed to focus on compositional language, and find that our model obtains reasonable performance (∼35 F1 compared to 41 F1 of state-of-the-art). We find in our analysis that our model performs well on complex questions involving conjunctions, but struggles on questions that involve relation composition and superlatives.