Graph Neural Networks(GNNs) have been applied successfully to various NLP tasks, particularly Relation Extraction(RE). Even though most of these approaches rely on the syntactic dependency tree of a sentence to derive a graph representation, the impact of this choice compared to other possible graph representations has not been evaluated. We examine the effect of representing text though a graph of different graph representations for GNNs that are applied to RE, considering, e.g., a fully connected graph of tokens, of semantic role structures, and combinations thereof. We further examine the impact of background knowledge injection from Knowledge Graphs(KGs) into the graph representation to achieve enhanced graph representations. Our results show that combining multiple graph representations can improve the model’s predictions. Moreover, the integration of background knowledge positively impacts scores, as enhancing the text graphs with Wikidata features or WordNet features can lead to an improvement of close to 0.1 points in F1.
Educational materials such as survey articles in specialized fields like computer science traditionally require tremendous expert inputs and are therefore expensive to create and update. Recently, Large Language Models (LLMs) have achieved significant success across various general tasks. However, their effectiveness and limitations in the education domain are yet to be fully explored. In this work, we examine the proficiency of LLMs in generating succinct survey articles specific to the niche field of NLP in computer science, focusing on a curated list of 99 topics. Automated benchmarks reveal that GPT-4 surpasses its predecessors, inluding GPT-3.5, PaLM2, and LLaMa2 by margins ranging from 2% to 20% in comparison to the established ground truth. We compare both human and GPT-based evaluation scores and provide in-depth analysis. While our findings suggest that GPT-created surveys are more contemporary and accessible than human-authored ones, certain limitations were observed. Notably, GPT-4, despite often delivering outstanding content, occasionally exhibited lapses like missing details or factual errors. At last, we compared the rating behavior between humans and GPT-4 and found systematic bias in using GPT evaluation.
In recent years, large language models have achieved state-of-the-art performance across various NLP tasks. However, investigations have shown that these models tend to rely on shortcut features, leading to inaccurate predictions and causing the models to be unreliable at generalization to out-of-distribution (OOD) samples. For instance, in the context of relation extraction (RE), we would expect a model to identify the same relation independently of the entities involved in it. For example, consider the sentence “Leonardo da Vinci painted the Mona Lisa” expressing the created(Leonardo_da_Vinci, Mona_Lisa) relation. If we substiute “Leonardo da Vinci” with “Barack Obama”, then the sentence still expresses the created relation. A robust model is supposed to detect the same relation in both cases. In this work, we describe several semantically-motivated strategies to generate adversarial examples by replacing entity mentions and investigate how state-of-the-art RE models perform under pressure. Our analyses show that the performance of these models significantly deteriorates on the modified datasets (avg. of -48.5% in F1), which indicates that these models rely to a great extent on shortcuts, such as surface forms (or patterns therein) of entities, without making full use of the information present in the sentences.