Mouna Kamel


2025

pdf bib
The contribution of LLMs to relation extraction in the economic field
Mohamed Ettaleb | Mouna Kamel | Nathalie Aussenac-Gilles | Véronique Moriceau
Proceedings of the Joint Workshop of the 9th Financial Technology and Natural Language Processing (FinNLP), the 6th Financial Narrative Processing (FNP), and the 1st Workshop on Large Language Models for Finance and Legal (LLMFinLegal)

Relation Extraction (RE) is a fundamental task in natural language processing, aimed at deducing semantic relationships between entities in a text. Traditional supervised extraction methods relation extraction methods involve training models to annotate tokens representing entity mentions, followed by predicting the relationship between these entities. However, recent advancements have transformed this task into a sequence-to-sequence problem. This involves converting relationships between entities into target string, which are then generated from the input text. Thus, language models now appear as a solution to this task and have already been used in numerous studies, with various levels of refinement, across different domains. The objective of the present study is to evaluate the contribution of large language models (LLM) to the task of relation extraction in a specific domain (in this case, the economic domain), compared to smaller language models. To do this, we considered as a baseline a model based on the BERT architecture, trained in this domain, and four LLM, namely FinGPT specific to the financial domain, XLNet, ChatGLM, and Llama3, which are generalists. All these models were evaluated on the same extraction task, with zero-shot for the general-purpose LLM, as well as refinements through few-shot learning and fine-tuning. The experiments showedthat the best performance in terms of F-score was achieved with fine-tuned LLM, with Llama3 achieving the highest performance.

2017

pdf bib
Extracting hypernym relations from Wikipedia disambiguation pages : comparing symbolic and machine learning approaches
Mouna Kamel | Cassia Trojahn | Adel Ghamnia | Nathalie Aussenac-Gilles | Cécile Fabre
Proceedings of the 12th International Conference on Computational Semantics (IWCS) — Long papers

2015

pdf bib
Discovering Hypernymy Relations using Text Layout
Jean-Philippe Fauconnier | Mouna Kamel
Proceedings of the Fourth Joint Conference on Lexical and Computational Semantics

2014

pdf bib
Automatic Detection of Document Organizational Structure from Visual and Lexical Markers (Détection automatique de la structure organisationnelle de documents à partir de marqueurs visuels et lexicaux) [in French]
Jean-Philippe Fauconnier | Laurent Sorin | Mouna Kamel | Mustapha Mojahid | Nathalie Aussenac-Gilles
Proceedings of TALN 2014 (Volume 1: Long Papers)

2013

pdf bib
A Supervised learning for the identification of semantic relations in parallel enumerative structures (Apprentissage supervisé pour l’identification de relations sémantiques au sein de structures énumératives parallèles) [in French]
Jean-Philippe Fauconnier | Mouna Kamel | Bernard Rothenburger | Nathalie Aussenac-Gilles
Proceedings of TALN 2013 (Volume 1: Long Papers)

2011

pdf bib
Enrichir la notion de patron par la prise en compte de la structure textuelle - Application à la construction d’ontologie (Enriching the notion of pattern by taking into account the textual structure - Application to ontology construction)
Marion Laignelet | Mouna Kamel | Nathalie Aussenac-Gilles
Actes de la 18e conférence sur le Traitement Automatique des Langues Naturelles. Articles courts

La projection de patrons lexico-syntaxiques sur corpus est une des manières privilégiées pour identifier des relations sémantiques précises entre éléments lexicaux. Dans cet article, nous proposons d’étendre la notion de patron en prenant en compte la sémantique que véhiculent les éléments de structure d’un document (définitions, titres, énumérations) dans l’identification de relations. Nous avons testé cette hypothèse dans le cadre de la construction d’ontologies à partir de textes fortement structurés du domaine de la cartographie.