Mukund Srinath


pdf bib
The Sentiment Problem: A Critical Survey towards Deconstructing Sentiment Analysis
Pranav Venkit | Mukund Srinath | Sanjana Gautam | Saranya Venkatraman | Vipul Gupta | Rebecca Passonneau | Shomir Wilson
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

We conduct an inquiry into the sociotechnical aspects of sentiment analysis (SA) by critically examining 189 peer-reviewed papers on their applications, models, and datasets. Our investigation stems from the recognition that SA has become an integral component of diverse sociotechnical systems, exerting influence on both social and technical users. By delving into sociological and technological literature on sentiment, we unveil distinct conceptualizations of this term in domains such as finance, government, and medicine. Our study exposes a lack of explicit definitions and frameworks for characterizing sentiment, resulting in potential challenges and biases. To tackle this issue, we propose an ethics sheet encompassing critical inquiries to guide practitioners in ensuring equitable utilization of SA. Our findings underscore the significance of adopting an interdisciplinary approach to defining sentiment in SA and offer a pragmatic solution for its implementation.

pdf bib
Automated Ableism: An Exploration of Explicit Disability Biases in Sentiment and Toxicity Analysis Models
Pranav Narayanan Venkit | Mukund Srinath | Shomir Wilson
Proceedings of the 3rd Workshop on Trustworthy Natural Language Processing (TrustNLP 2023)

We analyze sentiment analysis and toxicity detection models to detect the presence of explicit bias against people with disability (PWD). We employ the bias identification framework of Perturbation Sensitivity Analysis to examine conversations related to PWD on social media platforms, specifically Twitter and Reddit, in order to gain insight into how disability bias is disseminated in real-world social settings. We then create the Bias Identification Test in Sentiment (BITS) corpus to quantify explicit disability bias in any sentiment analysis and toxicity detection models. Our study utilizes BITS to uncover significant biases in four open AIaaS (AI as a Service) sentiment analysis tools, namely TextBlob, VADER, Google Cloud Natural Language API, DistilBERT and two toxicity detection models, namely two versions of Toxic-BERT. Our findings indicate that all of these models exhibit statistically significant explicit bias against PWD.


pdf bib
A Study of Implicit Bias in Pretrained Language Models against People with Disabilities
Pranav Narayanan Venkit | Mukund Srinath | Shomir Wilson
Proceedings of the 29th International Conference on Computational Linguistics

Pretrained language models (PLMs) have been shown to exhibit sociodemographic biases, such as against gender and race, raising concerns of downstream biases in language technologies. However, PLMs’ biases against people with disabilities (PWDs) have received little attention, in spite of their potential to cause similar harms. Using perturbation sensitivity analysis, we test an assortment of popular word embedding-based and transformer-based PLMs and show significant biases against PWDs in all of them. The results demonstrate how models trained on large corpora widely favor ableist language.


pdf bib
Privacy at Scale: Introducing the PrivaSeer Corpus of Web Privacy Policies
Mukund Srinath | Shomir Wilson | C Lee Giles
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Organisations disclose their privacy practices by posting privacy policies on their websites. Even though internet users often care about their digital privacy, they usually do not read privacy policies, since understanding them requires a significant investment of time and effort. Natural language processing has been used to create experimental tools to interpret privacy policies, but there has been a lack of large privacy policy corpora to facilitate the creation of large-scale semi-supervised and unsupervised models to interpret and simplify privacy policies. Thus, we present the PrivaSeer Corpus of 1,005,380 English language website privacy policies collected from the web. The number of unique websites represented in PrivaSeer is about ten times larger than the next largest public collection of web privacy policies, and it surpasses the aggregate of unique websites represented in all other publicly available privacy policy corpora combined. We describe a corpus creation pipeline with stages that include a web crawler, language detection, document classification, duplicate and near-duplicate removal, and content extraction. We employ an unsupervised topic modelling approach to investigate the contents of policy documents in the corpus and discuss the distribution of topics in privacy policies at web scale. We further investigate the relationship between privacy policy domain PageRanks and text features of the privacy policies. Finally, we use the corpus to pretrain PrivBERT, a transformer-based privacy policy language model, and obtain state of the art results on the data practice classification and question answering tasks.