Myoung-Wan Koo


2024

pdf bib
Towards Context-Based Violence Detection: A Korean Crime Dialogue Dataset
Minju Kim | Heuiyeen Yeen | Myoung-Wan Koo
Findings of the Association for Computational Linguistics: EACL 2024

In order to enhance the security of society, there is rising interest in artificial intelligence (AI) to help detect and classify in advanced violence in daily life. The field of violence detection has introduced various datasets, yet context-based violence detection predominantly focuses on vision data, with a notable lack of NLP datasets. To overcome this, this paper presents the first Korean dialogue dataset for classifying violence that occurs in online settings: the Korean Crime Dialogue Dataset (KCDD). KCDD contains 22,249 dialogues created by crowd workers assuming offline scenarios. It has four criminal classes that meet international legal standards and one clean class (Serious Threats, Extortion or Blackmail, Harassment in the Workplace, Other Harassment, and Clean Dialogue). Plus, we propose a strong baseline for the proposed dataset, Relationship-Aware BERT. The model shows that understanding varying relationships among interlocutors improves the performance of crime dialogue classification. We hope that the proposed dataset will be used to detect cases of violence and aid people in danger. The KCDD dataset and corresponding baseline implementations can be found at the following link: https://sites.google.com/view/kcdd.

pdf bib
SELF-EXPERTISE: Knowledge-based Instruction Dataset Augmentation for a Legal Expert Language Model
Minju Kim | Haein Jung | Myoung-Wan Koo
Findings of the Association for Computational Linguistics: NAACL 2024

The advent of instruction-tuned large language models (LLMs) has significantly advanced the field of automatic instruction dataset augmentation. However, the method of generating instructions and outputs from inherent knowledge of LLM can unintentionally produce hallucinations — instances of generating factually incorrect or misleading information. To overcome this, we propose SELF-EXPERTISE, automatically generating instruction dataset in the legal domain from a seed dataset. SELF-EXPERTISE extracts knowledge from the outputs of the seed dataset, and generates new instructions, inputs, and outputs. In this way, the proposed method reduces hallucination in automatic instruction augmentation. We trained an SELF-EXPERTISE augmented instruction dataset on the LLaMA-2 7B model to construct Korean legal specialized model, called LxPERT. LxPERT has demonstrated performance surpassing GPT-3.5-turbo in both in-domain and out-of-domain datasets. The SELF-EXPERTISE augmentation pipeline is not only applicable to the legal field but is also expected to be extendable to various domains, potentially advancing domain-specialized LLMs.

2023

pdf bib
Enhancing Task-Oriented Dialog System with Subjective Knowledge: A Large Language Model-based Data Augmentation Framework
Haein Jung | Heuiyeen Yeen | Jeehyun Lee | Minju Kim | Namo Bang | Myoung-Wan Koo
Proceedings of The Eleventh Dialog System Technology Challenge

As Task-Oriented Dialog (TOD) systems have advanced, structured DB systems, which aim to collect relevant knowledge for answering user’s questions, have also progressed. Despite these advancements, these methods face challenges when dealing with subjective questions from users. To overcome this, DSTC11 released a subjective-knowledge-based TOD (SK-TOD) dataset and benchmark. This paper introduces a framework that effectively solves SK-TOD tasks by leveraging a Large Language Model (LLM). We demonstrate the proficient use of LLM for each sub-task, including an adapters-based method and knowledge-grounded data augmentation. Our proposed methods, which utilize LLM as an efficient tool, outperform baseline performance and approaches that directly use LLM as a one-step sub-task solver, showing superior task-specific optimization.

pdf bib
Task-Optimized Adapters for an End-to-End Task-Oriented Dialogue System
Namo Bang | Jeehyun Lee | Myoung-Wan Koo
Findings of the Association for Computational Linguistics: ACL 2023

Task-Oriented Dialogue (TOD) systems are designed to carry out specific tasks by tracking dialogue states and generating appropriate responses to help users achieve defined goals. Recently, end-to-end dialogue models pre-trained based on large datasets have shown promising performance in the conversational system. However, they share the same parameters to train tasks of the dialogue system (NLU, DST, NLG), so debugging each task is challenging. Also, they require a lot of effort to fine-tune large parameters to create a task-oriented chatbot, making it difficult for non-experts to handle. Therefore, we intend to train relatively lightweight and fast models compared to PLM. In this paper, we propose an End-to-end TOD system with Task-Optimized Adapters which learn independently per task, adding only small number of parameters after fixed layers of pre-trained network. We also enhance the performance of the DST and NLG modules through reinforcement learning, overcoming the learning curve that has lacked at the adapter learning and enabling the natural and consistent response generation that is appropriate for the goal. Our method is a model-agnostic approach and does not require prompt-tuning as only input data without a prompt. As results of the experiment, our method shows competitive performance on the MultiWOZ benchmark compared to the existing end-to-end models. In particular, we attain state-of-the-art performance on the DST task of 2.2 dataset.