Myung Hee Kim
2023
Task and Sentiment Adaptation for Appraisal Tagging
Lin Tian
|
Xiuzhen Zhang
|
Myung Hee Kim
|
Jennifer Biggs
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
The Appraisal framework in linguistics defines the framework for fine-grained evaluations and opinions and has contributed to sentiment analysis and opinion mining. As developing appraisal-annotated resources requires tagging of several dimensions with distinct semantic taxonomies, it has been primarily conducted manually by human experts through expensive and time-consuming processes. In this paper, we study how to automatically identify and annotate text segments for appraisal. We formulate the problem as a sequence tagging problem and propose novel task and sentiment adapters based on language models for appraisal tagging. Our model, named Adaptive Appraisal (Aˆ2), achieves superior performance than baseline adapter-based models and other neural classification models, especially for cross-domain and cross-language settings. Source code for Aˆ2 is available at: https://github.com/ltian678/AA-code.git
2020
An Enhanced Mapping Scheme of the Universal Part-Of-Speech for Korean
Myung Hee Kim
|
Nathalie Colineau
Proceedings of the Twelfth Language Resources and Evaluation Conference
When mapping a language specific Part-Of-Speech (POS) tag set to the Universal POS tag set (UPOS), it is critical to consider the individual language’s linguistic features and the UPOS definitions. In this paper, we present an enhanced Sejong POS mapping to the UPOS in accordance with the Korean linguistic typology and the substantive definitions of the UPOS categories. This work updated one third of the Sejong POS mapping to the UPOS. We also introduced a new mapping for the KAIST POS tag set, another widely used Korean POS tag set, to the UPOS.