Mahjabin Nahar
2025
Beyond Checkmate: Exploring the Creative Choke Points for AI Generated Texts
Nafis Irtiza Tripto
|
Saranya Venkatraman
|
Mahjabin Nahar
|
Dongwon Lee
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
The rapid advancement of Large Language Models (LLMs) has revolutionized text generation but also raised concerns about potential misuse, making detecting LLM-generated text (AI text) increasingly essential. While prior work has focused on identifying AI text and effectively checkmating it, our study investigates a less-explored territory: portraying the nuanced distinctions between human and AI texts across text segments (introduction, body, and conclusion). Whether LLMs excel or falter in incorporating linguistic ingenuity across text segments, the results will critically inform their viability and boundaries as effective creative assistants to humans. Through an analogy with the structure of chess games, comprising opening, middle, and end games, we analyze segment-specific patterns to reveal where the most striking differences lie. Although AI texts closely resemble human writing in the body segment due to its length, deeper analysis shows a higher divergence in features dependent on the continuous flow of language, making it the most informative segment for detection. Additionally, human texts exhibit greater stylistic variation across segments, offering a new lens for distinguishing them from AI. Overall, our findings provide fresh insights into human-AI text differences and pave the way for more effective and interpretable detection strategies. Codes available at https://github.com/tripto03/chess_inspired_human_ai_text_distinction.
Chain-of-Interactions: Multi-step Iterative ICL Framework for Abstractive Task-Oriented Dialogue Summarization of Conversational AI Interactions
Jason S Lucas
|
Ali Al Lawati
|
Mahjabin Nahar
|
John Chen
|
Mahnoosh Mehrabani
Findings of the Association for Computational Linguistics: EMNLP 2025
Large Language Models (LLMs) have introduced paradigm-shifting approaches in natural language processing. Yet, their transformative in-context learning (ICL) capabilities remain underutilized, especially in customer service dialogue summarization—a domain plagued by generative hallucinations, detail omission, and inconsistencies. We present Chain-of-Interactions (CoI), a novel single-instance, multi-step framework that orchestrates information extraction, self-correction, and evaluation through sequential interactive generation chains. By strategically leveraging LLMs’ ICL capabilities through precisely engineered prompts, CoI dramatically enhances abstractive task-oriented dialogue summarization (ATODS) quality and usefulness. Our comprehensive evaluation on real-world and benchmark human-agent interaction datasets demonstrates CoI’s effectiveness through rigorous testing across 11 models and 7 prompting approaches, with 9 standard automatic evaluation metrics, 3 LLM-based evaluations, and human studies involving 480 evaluators across 9 quality dimensions. Results reveal CoI’s decisive superiority, outperforming all single-step approaches and achieving 6× better entity preservation, 49% higher quality scores, and 322% improvement in accuracy compared to state-of-the-art multi-step Chain-of-Density (CoD). This research addresses critical gaps in task-oriented dialogue summarization for customer service applications and establishes new standards for harnessing LLMs’ reasoning capabilities in practical, industry-relevant contexts.
Search
Fix author
Co-authors
- Ali Al Lawati 1
- John Chen 1
- Dongwon Lee 1
- Jason S Lucas 1
- Mahnoosh Mehrabani 1
- show all...