Maochuan Lu
2025
Efficient Knowledge Editing via Minimal Precomputation
Akshat Gupta
|
Maochuan Lu
|
Thomas Hartvigsen
|
Gopala Anumanchipalli
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
Knowledge editing methods like MEMIT are able to make data and compute efficient updates of factual knowledge by using a single sentence to update facts and their consequences. However, what is often overlooked is a “precomputation step”, which requires a one-time but significant computational cost. The authors of MEMIT (CITATION) originally precompute approximately 44 million hidden vectors per edited layer, which requires a forward pass over 44 million tokens. For GPT-J (6B), this precomputation step takes 36 hours on a single GPU, while it takes approximately 40 hours for Llama2-7B. Additionally, this precomputation time grows with model size. In this paper, we show that this excessive computational cost is unnecessary. Knowledge editing using MEMIT and related methods, such as ROME and EMMET, can be performed by pre-computing a very small portion of the 44 million hidden vectors. We first present the theoretical minimum number of hidden vector precomputation required for solutions of these editing methods to exist. We then empirically show that knowledge editing using these methods can be done by pre-computing significantly fewer hidden vectors. Specifically, we show that the precomputation step can be done with less than 0.3% of the originally stipulated number of hidden vectors. This saves a significant amount of precomputation time and allows users to begin editing new models within a few minutes.
Lifelong Knowledge Editing requires Better Regularization
Akshat Gupta
|
Phudish Prateepamornkul
|
Maochuan Lu
|
Ahmed Alaa
|
Thomas Hartvigsen
|
Gopala Anumanchipalli
Findings of the Association for Computational Linguistics: EMNLP 2025
Knowledge editing is a promising way to improve factuality in large language models, but recent studies have shown significant model degradation during sequential editing. In this paper, we formalize the popular locate-then-edit methods as a two-step fine-tuning process, allowing us to precisely identify the root cause of this degradation. We show that model degradation occurs due to (1) over-optimization of internal activations and (2) continuous norm-growth of edited matrices. To mitigate these issues, we introduce two regularization techniques: (1) Most-Probable Early Stopping (MPES) and (2) explicit Frobenius norm-constraint. We demonstrate that applying these simple yet effective regularization techniques at key points in the editing process can substantially mitigate model degradation. Combining these regularization methods enables scaling locate-then-edit methods to 10,000 edits while reducing editing time by 42-61%. These results show that targeted regularization is essential for lifelong knowledge editing.