Mengzhang Cai
2025
Middo: Model-Informed Dynamic Data Optimization for Enhanced LLM Fine-Tuning via Closed-Loop Learning
Zinan Tang
|
Xin Gao
|
Qizhi Pei
|
Zhuoshi Pan
|
Mengzhang Cai
|
Jiang Wu
|
Conghui He
|
Lijun Wu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Supervised Fine-Tuning (SFT) Large Language Models (LLM) fundamentally rely on high-quality training data. While data selection and data synthesis are two common strategies to improve data quality, existing approaches often face limitations in static dataset curation that fail to adapt to evolving model capabilities. In this paper, we introduce **Middo**, a self-evolving **M**odel-**i**nformed **d**ynamic **d**ata **o**ptimization framework that uses model-aware data selection and context-preserving data refinement. Unlike conventional one-off filtering/synthesis methods, our framework establishes a closed-loop optimization system: (1) A self-referential diagnostic module proactively identifies suboptimal samples through tri-axial model signals - *loss patterns (complexity)*, *embedding cluster dynamics (diversity)*, and *self-alignment scores (quality)*; (2) An adaptive optimization engine then transforms suboptimal samples into pedagogically valuable training points while preserving semantic integrity; (3) This optimization process continuously evolves with model capability through dynamic learning principles. Experiments on multiple benchmarks demonstrate that our consistently enhances the quality of seed data and boosts LLM’s performance with improving accuracy by 7.15% on average while maintaining the original dataset scale. This work establishes a new paradigm for sustainable LLM training through dynamic human-AI co-evolution of data and models.
MetaLadder: Ascending Mathematical Solution Quality via Analogical-Problem Reasoning Transfer
Honglin Lin
|
Zhuoshi Pan
|
Qizhi Pei
|
Xin Gao
|
Yu Li
|
Mengzhang Cai
|
Conghui He
|
Lijun Wu
Findings of the Association for Computational Linguistics: EMNLP 2025
Large Language Models (LLMs) have demonstrated promising capabilities in solving mathematical reasoning tasks, leveraging Chain-of-Thought (CoT) data as a vital component in guiding answer generation. Current paradigms typically generate CoT and answers directly for a given problem, diverging from human problem-solving strategies to some extent. Humans often solve problems by recalling analogous cases and leveraging their solutions to reason about the current task. Inspired by this cognitive process, we propose MetaLadder, a novel framework that explicitly prompts LLMs to recall and reflect on meta-problems, those structurally or semantically analogical problems, alongside their CoT solutions before addressing the target problem. Additionally, we introduce a problem-restating mechanism to enhance the model’s comprehension of the target problem by regenerating the original question, which further improves reasoning accuracy. Therefore, the model can achieve reasoning transfer from analogical problems, mimicking human-like “learning from examples” and generalization abilities. Extensive experiments on mathematical benchmarks demonstrate that our MetaLadder significantly boosts LLMs’ problem-solving accuracy, largely outperforming standard CoT-based methods (10.3% accuracy gain) and other methods.