Muhammad Arham


2025

pdf bib
1-800-SHARED-TASKS@NLU of Devanagari Script Languages 2025: Detection of Language, Hate Speech, and Targets using LLMs
Jebish Purbey | Siddartha Pullakhandam | Kanwal Mehreen | Muhammad Arham | Drishti Sharma | Ashay Srivastava | Ram Mohan Rao Kadiyala
Proceedings of the First Workshop on Challenges in Processing South Asian Languages (CHiPSAL 2025)

This paper presents a detailed system description of our entry for the CHiPSAL 2025 challenge, focusing on language detection, hate speech identification, and target detection in Devanagari script languages. We experimented with a combination of large language models and their ensembles, including MuRIL, IndicBERT, and Gemma-2, and leveraged unique techniques like focal loss to address challenges in the natural understanding of Devanagari languages, such as multilingual processing and class imbalance. Our approach achieved competitive results across all tasks: F1 of 0.9980, 0.7652, and 0.6804 for Sub-tasks A, B, and C respectively. This work provides insights into the effectiveness of transformer models in tasks with domain-specific and linguistic challenges, as well as areas for potential improvement in future iterations.

pdf bib
Alif: Advancing Urdu Large Language Models via Multilingual Synthetic Data Distillation
Muhammad Ali Shafique | Kanwal Mehreen | Muhammad Arham | Maaz Amjad | Sabur Butt | Hamza Farooq
Proceedings of the 5th Workshop on Multilingual Representation Learning (MRL 2025)

Developing a high-performing large language models (LLMs) for low-resource languages such as Urdu, present several challenges. These challenges include the scarcity of high-quality datasets, multilingual inconsistencies, and safety concerns. Existing multilingual LLMs often address these issues by translating large volumes of available data. However, such translations often lack quality and cultural nuance while also incurring significant costs for data curation and training. To address these issues, we propose Alif-1.0-8B-Instruct, a multilingual Urdu-English model, that tackles these challenges with a unique approach. We train the model on a high-quality, multilingual synthetic dataset (Urdu-Instruct), developed using a modified self-instruct technique. By using unique prompts and seed values for each task along with a global task pool, this dataset incorporates Urdu-native chain-of-thought based reasoning, bilingual translation, cultural relevance, and ethical safety alignments. This technique significantly enhances the comprehension of Alif-1.0-8B-Instruct model for Urdu-specific tasks. As a result, Alif-1.0-8B-Instruct, built upon the pretrained Llama-3.1-8B, demonstrates superior performance compared to Llama-3.1-8B-Instruct for Urdu specific-tasks. It also outperformed leading multilingual LLMs, including Mistral-7B-Instruct-v0.3, Qwen-2.5-7B-Instruct, and Cohere-Aya-Expanse-8B, all within a training budget of under $100. Our results demonstrate that high-performance and low-resource language LLMs can be developed efficiently and culturally aligned using our modified self-instruct approach.