Munazza Zaib
2025
Fine-Tuning Encoder-Decoder Models with Contrastive Learning for In-Context Distractor Generation
Elaf Alhazmi
|
Quan Z. Sheng
|
Wei Emma Zhang
|
Mohammed I. Thanoon
|
Haojie Zhuang
|
Behnaz Soltani
|
Munazza Zaib
Findings of the Association for Computational Linguistics: EMNLP 2025
Distractor generation is the task of automatically generating plausible yet incorrect options (i.e., distractors) for fill-in-the-blank and multiple-choice questions. In assessment, distractors must be contextually relevant to the given question and answer. Even though recent research works focus on fine-tuning pre-trained encoder-decoder models with data augmentation techniques to generate distractors, these models often fail to capture the full semantic representation of a given question-answer and related distractors. The augmentation methods often rely on expanding the quantity of proposed candidates (i.e., questions or distractors), which can introduce noise into the models without necessarily enhancing their understanding of the deeper semantic relationships between question-answer and related distractors. This paper introduces a novel distractor generation model based on contrastive learning to train the model to recognize essential semantic features necessary to generate in-context distractors. The extensive experiments on two public datasets indicate that contrastive learning introduces a strong baseline model to the distractor generation task. It significantly outperforms recent models, increasing the NDCG@3 score from 24.68 to 32.33 on the MCQ dataset and from 26.66 to 36.68 on the SciQ dataset.
2024
Distractor Generation in Multiple-Choice Tasks: A Survey of Methods, Datasets, and Evaluation
Elaf Alhazmi
|
Quan Z. Sheng
|
Wei Emma Zhang
|
Munazza Zaib
|
Ahoud Alhazmi
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
The distractor generation task focuses on generating incorrect but plausible options for objective questions such as fill-in-the-blank and multiple-choice questions. This task is widely utilized in educational settings across various domains and subjects. The effectiveness of these questions in assessments relies on the quality of the distractors, as they challenge examinees to select the correct answer from a set of misleading options. The evolution of artificial intelligence (AI) has transitioned the task from traditional methods to the use of neural networks and pre-trained language models. This shift has established new benchmarks and expanded the use of advanced deep learning methods in generating distractors. This survey explores distractor generation tasks, datasets, methods, and current evaluation metrics for English objective questions, covering both text-based and multi-modal domains. It also evaluates existing AI models and benchmarks and discusses potential future research directions.
Search
Fix author
Co-authors
- Elaf Alhazmi 2
- Quan Z. Sheng 2
- Wei Emma Zhang 2
- Ahoud Alhazmi 1
- Behnaz Soltani 1
- show all...