Nadia Saeed
2024
MediFact at MEDIQA-M3G 2024: Medical Question Answering in Dermatology with Multimodal Learning
Nadia Saeed
Proceedings of the 6th Clinical Natural Language Processing Workshop
The MEDIQA-M3G 2024 challenge necessitates novel solutions for Multilingual & Multimodal Medical Answer Generation in dermatology (wai Yim et al., 2024a). This paper addresses the limitations of traditional methods by proposing a weakly supervised learning approach for open-ended medical question-answering (QA). Our system leverages readily available MEDIQA-M3G images via a VGG16-CNN-SVM model, enabling multilingual (English, Chinese, Spanish) learning of informative skin condition representations. Using pre-trained QA models, we further bridge the gap between visual and textual information through multimodal fusion. This approach tackles complex, open-ended questions even without predefined answer choices. We empower the generation of comprehensive answers by feeding the ViT-CLIP model with multiple responses alongside images. This work advances medical QA research, paving the way for clinical decision support systems and ultimately improving healthcare delivery.
MediFact at MEDIQA-CORR 2024: Why AI Needs a Human Touch
Nadia Saeed
Proceedings of the 6th Clinical Natural Language Processing Workshop
Accurate representation of medical information is crucial for patient safety, yet artificial intelligence (AI) systems, such as Large Language Models (LLMs), encounter challenges in error-free clinical text interpretation. This paper presents a novel approach submitted to the MEDIQA-CORR 2024 shared task k (Ben Abacha et al., 2024a), focusing on the automatic correction of single-word errors in clinical notes. Unlike LLMs that rely on extensive generic data, our method emphasizes extracting contextually relevant information from available clinical text data. Leveraging an ensemble of extractive and abstractive question-answering approaches, we construct a supervised learning framework with domain-specific feature engineering. Our methodology incorporates domain expertise to enhance error correction accuracy. By integrating domain expertise and prioritizing meaningful information extraction, our approach underscores the significance of a human-centric strategy in adapting AI for healthcare.