Naganand Yadati


2024

pdf bib
GAINER: Graph Machine Learning with Node-specific Radius for Classification of Short Texts and Documents
Naganand Yadati
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Graphs provide a natural, intuitive, and holistic means to capture relationships between different text elements in Natural Language Processing (NLP) such as words, sentences, and documents. Recent advancements in the field of Graph Machine Learning (GML) have led to the development of numerous models to process text for various natural language applications, including but not limited to short-text classification, document classification, and others.At the heart of GML models, specifically those based on Graph Neural Networks (GNNs), lies the message passing operation which has shown to be an essential component for strong empirical performance in NLP.However, the number of message passing steps (often known as the radius) is fixed for all the nodes in existing GML models for NLP.Fixing the radius poses a fundamental restriction as nodes exhibit diverse properties and varying amounts of informative local structures in the input graph.This paper presents GAINER, a novel framework called Graph mAchine learnIng with Node-spEcific Radius, aimed at graph-based NLP. We propose non-neural and novel neural approaches built on the core ideas of GAINER.Through rigorous experimentation, we demonstrate the efficacy of GAINER in various popular NLP tasks.

2021

pdf bib
Knowledge Base Question Answering through Recursive Hypergraphs
Naganand Yadati | Dayanidhi R S | Vaishnavi S | Indira K M | Srinidhi G
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Knowledge Base Question Answering (KBQA) is the problem of predicting an answer for a factoid question over a given knowledge base (KB). Answering questions typically requires reasoning over multiple links in the given KB. Humans tend to answer questions by grouping different objects to perform reasoning over acquired knowledge. Hypergraphs provide a natural tool to model group relationships. In this work, inspired by typical human intelligence, we propose a new method for KBQA based on hypergraphs. Existing methods for KBQA, though effective, do not explicitly incorporate the recursive relational group structure in the given KB. Our method, which we name RecHyperNet (Recursive Hypergraph Network), exploits a new way of modelling KBs through recursive hypergraphs to organise such group relationships in KBs. Experiments on multiple KBQA benchmarks demonstrate the effectiveness of the proposed RecHyperNet. We have released the code.

2019

bib
Graph-based Deep Learning in Natural Language Processing
Shikhar Vashishth | Naganand Yadati | Partha Talukdar
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): Tutorial Abstracts

This tutorial aims to introduce recent advances in graph-based deep learning techniques such as Graph Convolutional Networks (GCNs) for Natural Language Processing (NLP). It provides a brief introduction to deep learning methods on non-Euclidean domains such as graphs and justifies their relevance in NLP. It then covers recent advances in applying graph-based deep learning methods for various NLP tasks, such as semantic role labeling, machine translation, relationship extraction, and many more.