Tables contrast with unstructured text data by its structure to organize the information.In this paper, we investigate the efficiency of various LLMs in interpreting tabular data through different prompting strategies and data formats. Our analysis extends across six benchmarks for table-related tasks such as question-answering and fact-checking. We pioneer in the assessment of LLMs’ performance on image-based table representation. Specifically, we compare five text-based and three image-based table representations, revealing the influence of representation and prompting on LLM performance. We hope our study provides researchers insights into optimizing LLMs’ application in table-related tasks.
Recent progress in large language models (LLMs) has enabled the deployment of many generative NLP applications. At the same time, it has also led to a misleading public discourse that “it’s all been solved.” Not surprisingly, this has, in turn, made many NLP researchers – especially those at the beginning of their careers – worry about what NLP research area they should focus on. Has it all been solved, or what remaining questions can we work on regardless of LLMs? To address this question, this paper compiles NLP research directions rich for exploration. We identify fourteen different research areas encompassing 45 research directions that require new research and are not directly solvable by LLMs. While we identify many research areas, many others exist; we do not cover areas currently addressed by LLMs, but where LLMs lag behind in performance or those focused on LLM development. We welcome suggestions for other research directions to include: https://bit.ly/nlp-era-llm.
We propose task-adaptive tokenization as a way to adapt the generation pipeline to the specifics of a downstream task and enhance long-form generation in mental health. Inspired by insights from cognitive science, our task-adaptive tokenizer samples variable segmentations from multiple outcomes, with sampling probabilities optimized based on task-specific data. We introduce a strategy for building a specialized vocabulary and introduce a vocabulary merging protocol that allows for the integration of task-specific tokens into the pre-trained model’s tokenization step. Through extensive experiments on psychological question-answering tasks in both Chinese and English, we find that our task-adaptive tokenization approach brings a significant improvement in generation performance while using up to 60% fewer tokens. Preliminary experiments point to promising results when using our tokenization approach with very large language models.
Theory of Mind (ToM) is the ability to reason about one’s own and others’ mental states. ToM plays a critical role in the development of intelligence, language understanding, and cognitive processes. While previous work has primarily focused on first and second-order ToM, we explore higher-order ToM, which involves recursive reasoning on others’ beliefs. %We also incorporate a new deception mechanism in ToM reasoning. We introduce Hi-ToM, a Higher Order Theory of Mind benchmark. Our experimental evaluation using various Large Language Models (LLMs) indicates a decline in performance on higher-order ToM tasks, demonstrating the limitations of current LLMs. We conduct a thorough analysis of different failure cases of LLMs, and share our thoughts on the implications of our findings on the future of NLP.
Annotator disagreement is ubiquitous in natural language processing (NLP) tasks. There are multiple reasons for such disagreements, including the subjectivity of the task, difficult cases, unclear guidelines, and so on. Rather than simply aggregating labels to obtain data annotations, we instead try to directly model the diverse perspectives of the annotators, and explicitly account for annotators’ idiosyncrasies in the modeling process by creating representations for each annotator (*annotator embeddings*) and also their annotations (*annotation embeddings*). In addition, we propose **TID-8**, **T**he **I**nherent **D**isagreement - **8** dataset, a benchmark that consists of eight existing language understanding datasets that have inherent annotator disagreement. We test our approach on TID-8 and show that our approach helps models learn significantly better from disagreements on six different datasets in TID-8 while increasing model size by fewer than 1% parameters. By capturing the unique tendencies and subjectivity of individual annotators through embeddings, our representations prime AI models to be inclusive of diverse viewpoints.
Text-to-SQL has attracted attention from both the natural language processing and database communities because of its ability to convert the semantics in natural language into SQL queries and its practical application in building natural language interfaces to database systems. The major challenges in text-to-SQL lie in encoding the meaning of natural utterances, decoding to SQL queries, and translating the semantics between these two forms. These challenges have been addressed to different extents by the recent advances. However, there is still a lack of comprehensive surveys for this task. To this end, we review recent progress on text-to-SQL for datasets, methods, and evaluation and provide this systematic survey, addressing the aforementioned challenges and discussing potential future directions. We hope this survey can serve as quick access to existing work and motivate future research.
Existing video understanding datasets mostly focus on human interactions, with little attention being paid to the “in the wild” settings, where the videos are recorded outdoors. We propose WILDQA, a video understanding dataset of videos recorded in outside settings. In addition to video question answering (Video QA), we also introduce the new task of identifying visual support for a given question and answer (Video Evidence Selection). Through evaluations using a wide range of baseline models, we show that WILDQA poses new challenges to the vision and language research communities. The dataset is available at https: //lit.eecs.umich.edu/wildqa/.
We propose the shared task of cross-lingual conversation summarization, ConvSumX Challenge, opening new avenues for researchers to investigate solutions that integrate conversation summarization and machine translation. This task can be particularly useful due to the emergence of online meetings and conferences. We use a new benchmark, covering 2 real-world scenarios and 3 language directions, including a low-resource language, for evaluation. We hope that ConvSumX can motivate research to go beyond English and break the barrier for non-English speakers to benefit from recent advances of conversation summarization.
We report the results of DialogSum Challenge, the shared task on summarizing real-life sce- nario dialogues at INLG 2022. Four teams participate in this shared task and three submit their system reports, exploring different meth- ods to improve the performance of dialogue summarization. Although there is a great im- provement over the baseline models regarding automatic evaluation metrics, such as ROUGE scores, we find that there is a salient gap be- tween model generated outputs and human an- notated summaries by human evaluation from multiple aspects. These findings demonstrate the difficulty of dialogue summarization and suggest that more fine-grained evaluatuion met- rics are in need.
Recent studies have shown that for subjective annotation tasks, the demographics, lived experiences, and identity of annotators can have a large impact on how items are labeled. We expand on this work, hypothesizing that gender may correlate with differences in annotations for a number of NLP benchmarks, including those that are fairly subjective (e.g., affect in text) and those that are typically considered to be objective (e.g., natural language inference). We develop a robust framework to test for differences in annotation across genders for four benchmark datasets. While our results largely show a lack of statistically significant differences in annotation by males and females for these tasks, the framework can be used to analyze differences in annotation between various other demographic groups in future work. Finally, we note that most datasets are collected without annotator demographics and released only in aggregate form; we call on the community to consider annotator demographics as data is collected, and to release dis-aggregated data to allow for further work analyzing variability among annotators.