Korean is a language with complex morphology that uses spaces at larger-than-word boundaries, unlike other East-Asian languages. While morpheme-based text generation can provide significant semantic advantages compared to commonly used character-level approaches, Korean morphological analyzers only provide a sequence of morpheme-level tokens, losing information in the tokenization process. Two crucial issues are the loss of spacing information and subcharacter level morpheme normalization, both of which make the tokenization result challenging to reconstruct the original input string, deterring the application to generative tasks. As this problem originates from the conventional scheme used when creating a POS tagging corpus, we propose an improvement to the existing scheme, which makes it friendlier to generative tasks. On top of that, we suggest a fully-automatic annotation of a corpus by leveraging public analyzers. We vote the surface and POS from the outcome and fill the sequence with the selected morphemes, yielding tokenization with a decent quality that incorporates space information. Our scheme is verified via an evaluation done on an external corpus, and subsequently, it is adapted to Korean Wikipedia to construct an open, permissive resource. We compare morphological analyzer performance trained on our corpus with existing methods, then perform an extrinsic evaluation on a downstream task.
Paraphrasing is often performed with less concern for controlled style conversion. Especially for questions and commands, style-variant paraphrasing can be crucial in tone and manner, which also matters with industrial applications such as dialog systems. In this paper, we attack this issue with a corpus construction scheme that simultaneously considers the core content and style of directives, namely intent and formality, for the Korean language. Utilizing manually generated natural language queries on six daily topics, we expand the corpus to formal and informal sentences by human rewriting and transferring. We verify the validity and industrial applicability of our approach by checking the adequate classification and inference performance that fit with conventional fine-tuning approaches, at the same time proposing a supervised formality transfer task.
Assessing the similarity of sentences and detecting paraphrases is an essential task both in theory and practice, but achieving a reliable dataset requires high resource. In this paper, we propose a discourse component-based paraphrase generation for the directive utterances, which is efficient in terms of human-aided construction and content preservation. All discourse components are expressed in natural language phrases, and the phrases are created considering both speech act and topic so that the controlled construction of the sentence similarity dataset is available. Here, we investigate the validity of our scheme using the Korean language, a language with diverse paraphrasing due to frequent subject drop and scramblings. With 1,000 intent argument phrases and thus generated 10,000 utterances, we make up a sentence similarity dataset of practically sufficient size. It contains five sentence pair types, including paraphrase, and displays a total volume of about 550K. To emphasize the utility of the scheme and dataset, we measure the similarity matching performance via conventional natural language inference models, also suggesting the multi-lingual extensibility.
Code-mixed grapheme-to-phoneme (G2P) conversion is a crucial issue for modern speech recognition and synthesis task, but has been seldom investigated in sentence-level in literature. In this study, we construct a system that performs precise and efficient multi-stage code-mixed G2P conversion, for a less studied agglutinative language, Korean. The proposed system undertakes a sentence-level transliteration that is effective in the accurate processing of Korean text. We formulate the underlying philosophy that supports our approach and demonstrate how it fits with the contemporary document.
Modern dialog managers face the challenge of having to fulfill human-level conversational skills as part of common user expectations, including but not limited to discourse with no clear objective. Along with these requirements, agents are expected to extrapolate intent from the user’s dialogue even when subjected to non-canonical forms of speech. This depends on the agent’s comprehension of paraphrased forms of such utterances. Especially in low-resource languages, the lack of data is a bottleneck that prevents advancements of the comprehension performance for these types of agents. In this regard, here we demonstrate the necessity of extracting the intent argument of non-canonical directives in a natural language format, which may yield more accurate parsing, and suggest guidelines for building a parallel corpus for this purpose. Following the guidelines, we construct a Korean corpus of 50K instances of question/command-intent pairs, including the labels for classification of the utterance type. We also propose a method for mitigating class imbalance, demonstrating the potential applications of the corpus generation method and its multilingual extensibility.
Ethics regarding social bias has recently thrown striking issues in natural language processing. Especially for gender-related topics, the need for a system that reduces the model bias has grown in areas such as image captioning, content recommendation, and automated employment. However, detection and evaluation of gender bias in the machine translation systems are not yet thoroughly investigated, for the task being cross-lingual and challenging to define. In this paper, we propose a scheme for making up a test set that evaluates the gender bias in a machine translation system, with Korean, a language with gender-neutral pronouns. Three word/phrase sets are primarily constructed, each incorporating positive/negative expressions or occupations; all the terms are gender-independent or at least not biased to one side severely. Then, additional sentence lists are constructed concerning formality of the pronouns and politeness of the sentences. With the generated sentence set of size 4,236 in total, we evaluate gender bias in conventional machine translation systems utilizing the proposed measure, which is termed here as translation gender bias index (TGBI). The corpus and the code for evaluation is available on-line.
This paper proposes a novel feature extraction process for SemEval task 3: Irony detection in English tweets. The proposed system incorporates a concatenative featurization of tweet and hashtags, which helps distinguishing between the irony-related and the other components. The system embeds tweets into a vector sequence with widely used pretrained word vectors, partially using a character embedding for the words that are out of vocabulary. Identification was performed with BiLSTM and CNN classifiers, achieving F1 score of 0.5939 (23/42) and 0.3925 (10/28) each for the binary and the multi-class case, respectively. The reliability of the proposed scheme was verified by analyzing the Gold test data, which demonstrates how hashtags can be taken into account when identifying various types of irony.