Nan-Jiang Jiang


2023

pdf bib
Ecologically Valid Explanations for Label Variation in NLI
Nan-Jiang Jiang | Chenhao Tan | Marie-Catherine de Marneffe
Findings of the Association for Computational Linguistics: EMNLP 2023

Human label variation, or annotation disagreement, exists in many natural language processing (NLP) tasks, including natural language inference (NLI). To gain direct evidence of how NLI label variation arises, we build LiveNLI, an English dataset of 1,415 ecologically valid explanations (annotators explain the NLI labels they chose) for 122 MNLI items (at least 10 explanations per item). The LiveNLI explanations confirm that people can systematically vary on their interpretation and highlight within-label variation: annotators sometimes choose the same label for different reasons. This suggests that explanations are crucial for navigating label interpretations in general. We few-shot prompt large language models to generate explanations but the results are inconsistent: they sometimes produces valid and informative explanations, but it also generates implausible ones that do not support the label, highlighting directions for improvement.

2022

pdf bib
Investigating Reasons for Disagreement in Natural Language Inference
Nan-Jiang Jiang | Marie-Catherine de Marneffe
Transactions of the Association for Computational Linguistics, Volume 10

We investigate how disagreement in natural language inference (NLI) annotation arises. We developed a taxonomy of disagreement sources with 10 categories spanning 3 high- level classes. We found that some disagreements are due to uncertainty in the sentence meaning, others to annotator biases and task artifacts, leading to different interpretations of the label distribution. We explore two modeling approaches for detecting items with potential disagreement: a 4-way classification with a “Complicated” label in addition to the three standard NLI labels, and a multilabel classification approach. We found that the multilabel classification is more expressive and gives better recall of the possible interpretations in the data.