Naoko Hayashida


2006

pdf bib
Automatic Detection and Semi-Automatic Revision of Non-Machine-Translatable Parts of a Sentence
Kiyotaka Uchimoto | Naoko Hayashida | Toru Ishida | Hitoshi Isahara
Proceedings of the Fifth International Conference on Language Resources and Evaluation (LREC’06)

We developed a method for automatically distinguishing the machine-translatable and non-machine-translatable parts of a given sentence for a particular machine translation (MT) system. They can be distinguished by calculating the similarity between a source-language sentence and its back translation for each part of the sentence. The parts with low similarities are highly likely to be non-machine-translatable parts. We showed that the parts of a sentence that are automatically distinguished as non-machine-translatable provide useful information for paraphrasing or revising the sentence in the source language to improve the quality of the translation by the MT system. We also developed a method of providing knowledge useful to effectively paraphrasing or revising the detected non-machine-translatable parts. Two types of knowledge were extracted from the EDR dictionary: one for transforming a lexical entry into an expression used in the definition and the other for conducting the reverse paraphrasing, which transforms an expression found in a definition into the lexical entry. We found that the information provided by the methods helped improve the machine translatability of the originally input sentences.

2005

pdf bib
Automatic Rating of Machine Translatability
Kiyotaka Uchimoto | Naoko Hayashida | Toru Ishida | Hitoshi Isahara
Proceedings of Machine Translation Summit X: Papers

We describe a method for automatically rating the machine translatability of a sentence for various machine translation (MT) systems. The method requires that the MT system can bidirectionally translate sentences in both source and target languages. However, it does not require reference translations, as is usual for automatic MT evaluation. By applying this method to every component of a sentence in a given source language, we can automatically identify the machine-translatable and non-machinetranslatable parts of a sentence for a particular MT system. We show that the parts of a sentence that are automatically identified as nonmachine-translatable provide useful information for paraphrasing or revising the sentence in the source language, thus improving the quality of the final translation.