Narges Razavian


2020

pdf bib
BERT-XML: Large Scale Automated ICD Coding Using BERT Pretraining
Zachariah Zhang | Jingshu Liu | Narges Razavian
Proceedings of the 3rd Clinical Natural Language Processing Workshop

ICD coding is the task of classifying and cod-ing all diagnoses, symptoms and proceduresassociated with a patient’s visit. The process isoften manual, extremely time-consuming andexpensive for hospitals as clinical interactionsare usually recorded in free text medical notes. In this paper, we propose a machine learningmodel, BERT-XML, for large scale automatedICD coding of EHR notes, utilizing recentlydeveloped unsupervised pretraining that haveachieved state of the art performance on a va-riety of NLP tasks. We train a BERT modelfrom scratch on EHR notes, learning with vo-cabulary better suited for EHR tasks and thusoutperform off-the-shelf models. We furtheradapt the BERT architecture for ICD codingwith multi-label attention. We demonstratethe effectiveness of BERT-based models on thelarge scale ICD code classification task usingmillions of EHR notes to predict thousands ofunique codes.