Natalia Kalashnikova


2022

pdf bib
Corpus Design for Studying Linguistic Nudges in Human-Computer Spoken Interactions
Natalia Kalashnikova | Serge Pajak | Fabrice Le Guel | Ioana Vasilescu | Gemma Serrano | Laurence Devillers
Proceedings of the Thirteenth Language Resources and Evaluation Conference

In this paper, we present the methodology of corpus design that will be used to study the comparison of influence between linguistic nudges with positive or negative influences and three conversational agents: robot, smart speaker, and human. We recruited forty-nine participants to form six groups. The conversational agents first asked the participants about their willingness to adopt five ecological habits and invest time and money in ecological problems. The participants were then asked the same questions but preceded by one linguistic nudge with positive or negative influence. The comparison of standard deviation and mean metrics of differences between these two notes (before the nudge and after) showed that participants were mainly affected by nudges with positive influence, even though several nudges with negative influence decreased the average note. In addition, participants from all groups were willing to spend more money than time on ecological problems. In general, our experiment’s early results suggest that a machine agent can influence participants to the same degree as a human agent. A better understanding of the power of influence of different conversational machines and the potential of influence of nudges of different polarities will lead to the development of ethical norms of human-computer interactions.

2020

pdf bib
Segmentation automatique en périodes pour le français parlé (Automatic Period Segmentation of Oral French)
Natalia Kalashnikova | Iris Eshkol-Taravella | Loïc Grobol | François Delafontaine
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 2 : Traitement Automatique des Langues Naturelles

Nous proposons la comparaison de deux méthodes de segmentation automatique du français parlé en périodes macro-syntaxiques, qui permettent d’analyser la syntaxe et la prosodie du discours. Nous comparons l’outil Analor (Avanzi et al., 2008) qui a été développé pour la segmentation des périodes prosodiques et les modèles de segmentations utilisant des CRF et des traits prosodiques et / ou morphosyntaxiques. Les résultats montrent qu’Analor divise le discours en plus petits segments prosodiques tandis que les modèles CRF détectent des segments plus larges que les périodes macro-syntaxiques. Cependant, les modèles CRF ont de meilleurs résultats qu’Analor en termes de F-mesure.

pdf bib
Automatic Period Segmentation of Oral French
Natalia Kalashnikova | Loïc Grobol | Iris Eshkol-Taravella | François Delafontaine
Proceedings of the Twelfth Language Resources and Evaluation Conference

Natural Language Processing in oral speech segmentation is still looking for a minimal unit to analyze. In this work, we present a comparison of two automatic segmentation methods of macro-syntactic periods which allows to take into account syntactic and prosodic components of speech. We compare the performances of an existing tool Analor (Avanzi, Lacheret-Dujour, Victorri, 2008) developed for automatic segmentation of prosodic periods and of CRF models relying on syntactic and / or prosodic features. We find that Analor tends to divide speech into smaller segments and that CRF models detect larger segments rather than macro-syntactic periods. However, in general CRF models perform better results than Analor in terms of F-measure.