Nathan Guillaume
2011
Désambiguïsation lexicale par propagation de mesures sémantiques locales par algorithmes à colonies de fourmis (Lexical disambiguation by propagation of local semantic measures using ant colony algorithms)
Didier Schwab
|
Jérôme Goulian
|
Nathan Guillaume
Actes de la 18e conférence sur le Traitement Automatique des Langues Naturelles. Articles longs
Effectuer une tâche de désambiguïsation lexicale peut permettre d’améliorer de nombreuses applications du traitement automatique des langues comme l’extraction d’informations multilingues, ou la traduction automatique. Schématiquement, il s’agit de choisir quel est le sens le plus approprié pour chaque mot d’un texte. Une des approches classiques consiste à estimer la proximité sémantique qui existe entre deux sens de mots puis de l’étendre à l’ensemble du texte. La méthode la plus directe donne un score à toutes les paires de sens de mots puis choisit la chaîne de sens qui a le meilleur score. La complexité de cet algorithme est exponentielle et le contexte qu’il est calculatoirement possible d’utiliser s’en trouve réduit. Il ne s’agit donc pas d’une solution viable. Dans cet article, nous nous intéressons à une autre méthode, l’adaptation d’un algorithme à colonies de fourmis. Nous présentons ses caractéristiques et montrons qu’il permet de propager à un niveau global les résultats des algorithmes locaux et de tenir compte d’un contexte plus long et plus approprié en un temps raisonnable.