Nathan Stringham
2024
Whispers of Doubt Amidst Echoes of Triumph in NLP Robustness
Ashim Gupta
|
Rishanth Rajendhran
|
Nathan Stringham
|
Vivek Srikumar
|
Ana Marasovic
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
*Do larger and more performant models resolve NLP’s longstanding robustness issues?* We investigate this question using over 20 models of different sizes spanning different architectural choices and pretraining objectives. We conduct evaluations using (a) out-of-domain and challenge test sets, (b) behavioral testing with CheckLists, (c) contrast sets, and (d) adversarial inputs. Our analysis reveals that not all out-of-domain tests provide insight into robustness. Evaluating with CheckLists and contrast sets shows significant gaps in model performance; merely scaling models does not make them adequately robust. Finally, we point out that current approaches for adversarial evaluations of models are themselves problematic: they can be easily thwarted, and in their current forms, do not represent a sufficiently deep probe of model robustness. We conclude that not only is the question of robustness in NLP as yet unresolved, but even some of the approaches to measure robustness need to be reassessed.
2020
Evaluating Word Embeddings on Low-Resource Languages
Nathan Stringham
|
Mike Izbicki
Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems
The analogy task introduced by Mikolov et al. (2013) has become the standard metric for tuning the hyperparameters of word embedding models. In this paper, however, we argue that the analogy task is unsuitable for low-resource languages for two reasons: (1) it requires that word embeddings be trained on large amounts of text, and (2) analogies may not be well-defined in some low-resource settings. We solve these problems by introducing the OddOneOut and Topk tasks, which are specifically designed for model selection in the low-resource setting. We use these metrics to successfully tune hyperparameters for a low-resource emoji embedding task and word embeddings on 16 extinct languages. The largest of these languages (Ancient Hebrew) has a 41 million token dataset, and the smallest (Old Gujarati) has only a 1813 token dataset.