Nathaniel Robinson


pdf bib
Generalized Glossing Guidelines: An Explicit, Human- and Machine-Readable, Item-and-Process Convention for Morphological Annotation
David R. Mortensen | Ela Gulsen | Taiqi He | Nathaniel Robinson | Jonathan Amith | Lindia Tjuatja | Lori Levin
Proceedings of the 20th SIGMORPHON workshop on Computational Research in Phonetics, Phonology, and Morphology

Interlinear glossing provides a vital type of morphosyntactic annotation, both for linguists and language revitalists, and numerous conventions exist for representing it formally and computationally. Some of these formats are human readable; others are machine readable. Some are easy to edit with general-purpose tools. Few represent non-concatentative processes like infixation, reduplication, mutation, truncation, and tonal overwriting in a consistent and formally rigorous way (on par with affixation). We propose an annotation convention—Generalized Glossing Guidelines (GGG) that combines all of these positive properties using an Item-and-Process (IP) framework. We describe the format, demonstrate its linguistic adequacy, and compare it with two other interlinear glossed text annotation schemes.

pdf bib
SigMoreFun Submission to the SIGMORPHON Shared Task on Interlinear Glossing
Taiqi He | Lindia Tjuatja | Nathaniel Robinson | Shinji Watanabe | David R. Mortensen | Graham Neubig | Lori Levin
Proceedings of the 20th SIGMORPHON workshop on Computational Research in Phonetics, Phonology, and Morphology

In our submission to the SIGMORPHON 2023 Shared Task on interlinear glossing (IGT), we explore approaches to data augmentation and modeling across seven low-resource languages. For data augmentation, we explore two approaches: creating artificial data from the provided training data and utilizing existing IGT resources in other languages. On the modeling side, we test an enhanced version of the provided token classification baseline as well as a pretrained multilingual seq2seq model. Additionally, we apply post-correction using a dictionary for Gitksan, the language with the smallest amount of data. We find that our token classification models are the best performing, with the highest word-level accuracy for Arapaho and highest morpheme-level accuracy for Gitksan out of all submissions. We also show that data augmentation is an effective strategy, though applying artificial data pretraining has very different effects across both models tested.

pdf bib
Automating Sound Change Prediction for Phylogenetic Inference: A Tukanoan Case Study
Kalvin Chang | Nathaniel Robinson | Anna Cai | Ting Chen | Annie Zhang | David Mortensen
Proceedings of the 4th Workshop on Computational Approaches to Historical Language Change

We describe a set of new methods to partially automate linguistic phylogenetic inference given (1) cognate sets with their respective protoforms and sound laws, (2) a mapping from phones to their articulatory features and (3) a typological database of sound changes.We train a neural network on these sound change data to weight articulatory distances between phones and predict intermediate sound change steps between historical protoforms and their modern descendants, replacing a linguistic expert in part of a parsimony-based phylogenetic inference algorithm. In our best experiments on Tukanoan languages, this method produces trees with a Generalized Quartet Distance of 0.12 from a tree that used expert annotations, a significant improvement over other semi-automated baselines. We discuss potential benefits and drawbacks to our neural approach and parsimony-based tree prediction. We also experiment with a minimal generalization learner for automatic sound law induction, finding it less effective than sound laws from expert annotation. Our code is publicly available.

pdf bib
ChatGPT MT: Competitive for High- (but Not Low-) Resource Languages
Nathaniel Robinson | Perez Ogayo | David R. Mortensen | Graham Neubig
Proceedings of the Eighth Conference on Machine Translation

Large language models (LLMs) implicitly learn to perform a range of language tasks, including machine translation (MT). Previous studies explore aspects of LLMs’ MT capabilities. However, there exist a wide variety of languages for which recent LLM MT performance has never before been evaluated. Without published experimental evidence on the matter, it is difficult for speakers of the world’s diverse languages to know how and whether they can use LLMs for their languages. We present the first experimental evidence for an expansive set of 204 languages, along with MT cost analysis, using the FLORES-200 benchmark. Trends reveal that GPT models approach or exceed traditional MT model performance for some high-resource languages (HRLs) but consistently lag for low-resource languages (LRLs), under-performing traditional MT for 84.1% of languages we covered. Our analysis reveals that a language’s resource level is the most important feature in determining ChatGPT’s relative ability to translate it, and suggests that ChatGPT is especially disadvantaged for LRLs and African languages.


pdf bib
Data-adaptive Transfer Learning for Translation: A Case Study in Haitian and Jamaican
Nathaniel Robinson | Cameron Hogan | Nancy Fulda | David R. Mortensen
Proceedings of the Fifth Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2022)

Multilingual transfer techniques often improve low-resource machine translation (MT). Many of these techniques are applied without considering data characteristics. We show in the context of Haitian-to-English translation that transfer effectiveness is correlated with amount of training data and relationships between knowledge-sharing languages. Our experiments suggest that for some languages beyond a threshold of authentic data, back-translation augmentation methods are counterproductive, while cross-lingual transfer from a sufficiently related language is preferred. We complement this finding by contributing a rule-based French-Haitian orthographic and syntactic engine and a novel method for phonological embedding. When used with multilingual techniques, orthographic transformation makes statistically significant improvements over conventional methods. And in very low-resource Jamaican MT, code-switching with a transfer language for orthographic resemblance yields a 6.63 BLEU point advantage.

pdf bib
Task-dependent Optimal Weight Combinations for Static Embeddings
Nathaniel Robinson | Nathaniel Carlson | David Mortensen | Elizabeth Vargas | Thomas Fackrell | Nancy Fulda
Northern European Journal of Language Technology, Volume 8

A variety of NLP applications use word2vec skip-gram, GloVe, and fastText word embeddings. These models learn two sets of embedding vectors, but most practitioners use only one of them, or alternately an unweighted sum of both. This is the first study to systematically explore a range of linear combinations between the first and second embedding sets. We evaluate these combinations on a set of six NLP benchmarks including IR, POS-tagging, and sentence similarity. We show that the default embedding combinations are often suboptimal and demonstrate 1.0-8.0% improvements. Notably, GloVes default unweighted sum is its least effective combination across tasks. We provide a theoretical basis for weighting one set of embeddings more than the other according to the algorithm and task. We apply our findings to improve accuracy in applications of cross-lingual alignment and navigational knowledge by up to 15.2%.