Navdeep Kaur


pdf bib
NeuSTIP: A Neuro-Symbolic Model for Link and Time Prediction in Temporal Knowledge Graphs
Ishaan Singh | Navdeep Kaur | Garima Gaur | Mausam
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Neuro-symbolic (NS) models for knowledge graph completion (KGC) combine the benefits of symbolic models (interpretable inference) with those of distributed representations (parameter sharing, high accuracy). While several NS models exist for KGs with static facts, there is limited work on temporal KGC (TKGC) for KGs where a fact is associated with a time interval. In response, we propose a novel NS model for TKGC called NeuSTIP, which performs link prediction and time interval prediction in a TKG. NeuSTIP learns temporal rules with Allen predicates, which ensure temporal consistency between neighboring predicates in the rule body. We further design a unique scoring function that evaluates the confidence of the candidate answers while performing link and time interval predictions by utilizing the learned rules. Our empirical evaluation on two time interval based TKGC datasets shows that our model shows competitive performance on link prediction and establishes a new state of the art on time prediction.

pdf bib
Simple Augmentations of Logical Rules for Neuro-Symbolic Knowledge Graph Completion
Ananjan Nandi | Navdeep Kaur | Parag Singla | Mausam
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

High-quality and high-coverage rule sets are imperative to the success of Neuro-Symbolic Knowledge Graph Completion (NS-KGC) models, because they form the basis of all symbolic inferences. Recent literature builds neural models for generating rule sets, however, preliminary experiments show that they struggle with maintaining high coverage. In this work, we suggest three simple augmentations to existing rule sets: (1) transforming rules to their abductive forms, (2) generating equivalent rules that use inverse forms of constituent relations and (3) random walks that propose new rules. Finally, we prune potentially low quality rules. Experiments over four datasets and five ruleset-baseline settings suggest that these simple augmentations consistently improve results, and obtain up to 7.1 pt MRR and 8.5 pt Hits@1 gains over using rules without augmentations.