Nazneen Rajani


pdf bib
Char2Subword: Extending the Subword Embedding Space Using Robust Character Compositionality
Gustavo Aguilar | Bryan McCann | Tong Niu | Nazneen Rajani | Nitish Shirish Keskar | Thamar Solorio
Findings of the Association for Computational Linguistics: EMNLP 2021

Byte-pair encoding (BPE) is a ubiquitous algorithm in the subword tokenization process of language models as it provides multiple benefits. However, this process is solely based on pre-training data statistics, making it hard for the tokenizer to handle infrequent spellings. On the other hand, though robust to misspellings, pure character-level models often lead to unreasonably long sequences and make it harder for the model to learn meaningful words. To alleviate these challenges, we propose a character-based subword module (char2subword) that learns the subword embedding table in pre-trained models like BERT. Our char2subword module builds representations from characters out of the subword vocabulary, and it can be used as a drop-in replacement of the subword embedding table. The module is robust to character-level alterations such as misspellings, word inflection, casing, and punctuation. We integrate it further with BERT through pre-training while keeping BERT transformer parameters fixed–and thus, providing a practical method. Finally, we show that incorporating our module to mBERT significantly improves the performance on the social media linguistic code-switching evaluation (LinCE) benchmark.

pdf bib
FastIF: Scalable Influence Functions for Efficient Model Interpretation and Debugging
Han Guo | Nazneen Rajani | Peter Hase | Mohit Bansal | Caiming Xiong
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Influence functions approximate the “influences” of training data-points for test predictions and have a wide variety of applications. Despite the popularity, their computational cost does not scale well with model and training data size. We present FastIF, a set of simple modifications to influence functions that significantly improves their run-time. We use k-Nearest Neighbors (kNN) to narrow the search space down to a subset of good candidate data points, identify the configurations that best balance the speed-quality trade-off in estimating the inverse Hessian-vector product, and introduce a fast parallel variant. Our proposed method achieves about 80X speedup while being highly correlated with the original influence values. With the availability of the fast influence functions, we demonstrate their usefulness in four applications. First, we examine whether influential data-points can “explain” test time behavior using the framework of simulatability. Second, we visualize the influence interactions between training and test data-points. Third, we show that we can correct model errors by additional fine-tuning on certain influential data-points, improving the accuracy of a trained MultiNLI model by 2.5% on the HANS dataset. Finally, we experiment with a similar setup but fine-tuning on datapoints not seen during training, improving the model accuracy by 2.8% and 1.7% on HANS and ANLI datasets respectively. Overall, our fast influence functions can be efficiently applied to large models and datasets, and our experiments demonstrate the potential of influence functions in model interpretation and correcting model errors.

pdf bib
Knowledge-Enriched Natural Language Generation
Wenhao Yu | Meng Jiang | Zhiting Hu | Qingyun Wang | Heng Ji | Nazneen Rajani
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts

Knowledge-enriched text generation poses unique challenges in modeling and learning, driving active research in several core directions, ranging from integrated modeling of neural representations and symbolic information in the sequential/hierarchical/graphical structures, learning without direct supervisions due to the cost of structured annotation, efficient optimization and inference with massive and global constraints, to language grounding on multiple modalities, and generative reasoning with implicit commonsense knowledge and background knowledge. In this tutorial we will present a roadmap to line up the state-of-the-art methods to tackle these challenges on this cutting-edge problem. We will dive deep into various technical components: how to represent knowledge, how to feed knowledge into a generation model, how to evaluate generation results, and what are the remaining challenges?

pdf bib
Stage-wise Fine-tuning for Graph-to-Text Generation
Qingyun Wang | Semih Yavuz | Xi Victoria Lin | Heng Ji | Nazneen Rajani
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Student Research Workshop

Graph-to-text generation has benefited from pre-trained language models (PLMs) in achieving better performance than structured graph encoders. However, they fail to fully utilize the structure information of the input graph. In this paper, we aim to further improve the performance of the pre-trained language model by proposing a structured graph-to-text model with a two-step fine-tuning mechanism which first fine-tunes model on Wikipedia before adapting to the graph-to-text generation. In addition to using the traditional token and position embeddings to encode the knowledge graph (KG), we propose a novel tree-level embedding method to capture the inter-dependency structures of the input graph. This new approach has significantly improved the performance of all text generation metrics for the English WebNLG 2017 dataset.

pdf bib
SummVis: Interactive Visual Analysis of Models, Data, and Evaluation for Text Summarization
Jesse Vig | Wojciech Kryscinski | Karan Goel | Nazneen Rajani
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

Novel neural architectures, training strategies, and the availability of large-scale corpora haven been the driving force behind recent progress in abstractive text summarization. However, due to the black-box nature of neural models, uninformative evaluation metrics, and scarce tooling for model and data analysis the true performance and failure modes of summarization models remain largely unknown. To address this limitation, we introduce SummVis, an open-source tool for visualizing abstractive summaries that enables fine-grained analysis of the models, data, and evaluation metrics associated with text summarization. Through its lexical and semantic visualizations, the tools offers an easy entry point for in-depth model prediction exploration across important dimensions such as factual consistency or abstractiveness. The tool together with several pre-computed model outputs is available at