Neema Kotonya


2024

pdf bib
Towards a Framework for Evaluating Explanations in Automated Fact Verification
Neema Kotonya | Francesca Toni
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

As deep neural models in NLP become more complex, and as a consequence opaque, the necessity to interpret them becomes greater. A burgeoning interest has emerged in rationalizing explanations to provide short and coherent justifications for predictions. In this position paper, we advocate for a formal framework for key concepts and properties about rationalizing explanations to support their evaluation systematically. We also outline one such formal framework, tailored to rationalizing explanations of increasingly complex structures, from free-form explanations to deductive explanations, to argumentative explanations (with the richest structure). Focusing on the automated fact verification task, we provide illustrations of the use and usefulness of our formalization for evaluating explanations, tailored to their varying structures.

2023

pdf bib
Little Giants: Exploring the Potential of Small LLMs as Evaluation Metrics in Summarization in the Eval4NLP 2023 Shared Task
Neema Kotonya | Saran Krishnasamy | Joel Tetreault | Alejandro Jaimes
Proceedings of the 4th Workshop on Evaluation and Comparison of NLP Systems

This paper describes and analyzes our participation in the 2023 Eval4NLP shared task, which focuses on assessing the effectiveness of prompt-based techniques to empower Large Language Models to handle the task of quality estimation, particularly in the context of evaluating machine translations and summaries. We conducted systematic experiments with various prompting techniques, including standard prompting, prompts informed by annotator instructions, and innovative chain-of-thought prompting. In addition, we integrated these approaches with zero-shot and one-shot learning methods to maximize the efficacy of our evaluation procedures. Our work reveals that combining these approaches using a “small”, open source model (orca_mini_v3_7B) yields competitive results.

2021

pdf bib
Graph Reasoning with Context-Aware Linearization for Interpretable Fact Extraction and Verification
Neema Kotonya | Thomas Spooner | Daniele Magazzeni | Francesca Toni
Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER)

This paper presents an end-to-end system for fact extraction and verification using textual and tabular evidence, the performance of which we demonstrate on the FEVEROUS dataset. We experiment with both a multi-task learning paradigm to jointly train a graph attention network for both the task of evidence extraction and veracity prediction, as well as a single objective graph model for solely learning veracity prediction and separate evidence extraction. In both instances, we employ a framework for per-cell linearization of tabular evidence, thus allowing us to treat evidence from tables as sequences. The templates we employ for linearizing tables capture the context as well as the content of table data. We furthermore provide a case study to show the interpretability our approach. Our best performing system achieves a FEVEROUS score of 0.23 and 53% label accuracy on the blind test data.

2020

pdf bib
Explainable Automated Fact-Checking: A Survey
Neema Kotonya | Francesca Toni
Proceedings of the 28th International Conference on Computational Linguistics

A number of exciting advances have been made in automated fact-checking thanks to increasingly larger datasets and more powerful systems, leading to improvements in the complexity of claims which can be accurately fact-checked. However, despite these advances, there are still desirable functionalities missing from the fact-checking pipeline. In this survey, we focus on the explanation functionality – that is fact-checking systems providing reasons for their predictions. We summarize existing methods for explaining the predictions of fact-checking systems and we explore trends in this topic. Further, we consider what makes for good explanations in this specific domain through a comparative analysis of existing fact-checking explanations against some desirable properties. Finally, we propose further research directions for generating fact-checking explanations, and describe how these may lead to improvements in the research area.

pdf bib
Explainable Automated Fact-Checking for Public Health Claims
Neema Kotonya | Francesca Toni
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Fact-checking is the task of verifying the veracity of claims by assessing their assertions against credible evidence. The vast majority of fact-checking studies focus exclusively on political claims. Very little research explores fact-checking for other topics, specifically subject matters for which expertise is required. We present the first study of explainable fact-checking for claims which require specific expertise. For our case study we choose the setting of public health. To support this case study we construct a new dataset PUBHEALTH of 11.8K claims accompanied by journalist crafted, gold standard explanations (i.e., judgments) to support the fact-check labels for claims. We explore two tasks: veracity prediction and explanation generation. We also define and evaluate, with humans and computationally, three coherence properties of explanation quality. Our results indicate that, by training on in-domain data, gains can be made in explainable, automated fact-checking for claims which require specific expertise.

2019

pdf bib
Gradual Argumentation Evaluation for Stance Aggregation in Automated Fake News Detection
Neema Kotonya | Francesca Toni
Proceedings of the 6th Workshop on Argument Mining

Stance detection plays a pivot role in fake news detection. The task involves determining the point of view or stance – for or against – a text takes towards a claim. One very important stage in employing stance detection for fake news detection is the aggregation of multiple stance labels from different text sources in order to compute a prediction for the veracity of a claim. Typically, aggregation is treated as a credibility-weighted average of stance predictions. In this work, we take the novel approach of applying, for aggregation, a gradual argumentation semantics to bipolar argumentation frameworks mined using stance detection. Our empirical evaluation shows that our method results in more accurate veracity predictions.