Nicholas Evans


pdf bib
A Quest for Paradigm Coverage: The Story of Nen
Saliha Muradoglu | Hanna Suominen | Nicholas Evans
Proceedings of the Second Workshop on NLP Applications to Field Linguistics

Language documentation aims to collect a representative corpus of the language. Nevertheless, the question of how to quantify the comprehensive of the collection persists. We propose leveraging computational modelling to provide a supplementary metric to address this question in a low-resource language setting. We apply our proposed methods to the Papuan language Nen. Nen is actively in the process of being described and documented. Given the enormity of the task of language documentation, we focus on one subdomain, namely Nen verbal morphology. This study examines four verb types: copula, positional, middle, and transitive. We propose model-based paradigm generation for each verb type as a new way to measure completeness, where accuracy is analogous to the coverage of the paradigm. We contrast the paradigm attestation within the corpus (constructed from fieldwork data) and the accuracy of the paradigm generated by Transformer models trained for inflection. This analysis is extended by extrapolating from the learning curve established to provide predictions for the quantity of data required to generate a complete paradigm correctly. We also explore the correlation between high-frequency morphosyntactic features and model accuracy. We see a positive correlation between high-frequency feature combinations and model accuracy, but this is only sometimes the case. We also see high accuracy for low-frequency morphosyntactic features. Our results show that model coverage is significantly higher for the middle and transitive verbs but not the positional verb. This is an interesting finding, as the positional verb paradigm is the smallest of the four.


pdf bib
Modelling Verbal Morphology in Nen
Saliha Muradoglu | Nicholas Evans | Ekaterina Vylomova
Proceedings of the 18th Annual Workshop of the Australasian Language Technology Association

Nen verbal morphology is particularly complex; a transitive verb can take up to 1,740 unique forms. The combined effect of having a large combinatoric space and a low-resource setting amplifies the need for NLP tools. Nen morphology utilises distributed exponence - a non-trivial means of mapping form to meaning. In this paper, we attempt to model Nen verbal morphology using state-of-the-art machine learning models for morphological reinflection. We explore and categorise the types of errors these systems generate. Our results show sensitivity to training data composition; different distributions of verb type yield different accuracies (patterning with E-complexity). We also demonstrate the types of patterns that can be inferred from the training data, through the case study of sycretism.

pdf bib
To compress or not to compress? A Finite-State approach to Nen verbal morphology
Saliha Muradoglu | Nicholas Evans | Hanna Suominen
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

This paper describes the development of a verbal morphological parser for an under-resourced Papuan language, Nen. Nen verbal morphology is particularly complex, with a transitive verb taking up to 1,740 unique features. The structural properties exhibited by Nen verbs raises interesting choices for analysis. Here we compare two possible methods of analysis: ‘Chunking’ and decomposition. ‘Chunking’ refers to the concept of collating morphological segments into one, whereas the decomposition model follows a more classical linguistic approach. Both models are built using the Finite-State Transducer toolkit foma. The resultant architecture shows differences in size and structural clarity. While the ‘Chunking’ model is under half the size of the full de-composed counterpart, the decomposition displays higher structural order. In this paper, we describe the challenges encountered when modelling a language exhibiting distributed exponence and present the first morphological analyser for Nen, with an overall accuracy of 80.3%.