Nicolas Rodolfo Fauceglia


2021

pdf bib
Capturing Row and Column Semantics in Transformer Based Question Answering over Tables
Michael Glass | Mustafa Canim | Alfio Gliozzo | Saneem Chemmengath | Vishwajeet Kumar | Rishav Chakravarti | Avi Sil | Feifei Pan | Samarth Bharadwaj | Nicolas Rodolfo Fauceglia
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Transformer based architectures are recently used for the task of answering questions over tables. In order to improve the accuracy on this task, specialized pre-training techniques have been developed and applied on millions of open-domain web tables. In this paper, we propose two novel approaches demonstrating that one can achieve superior performance on table QA task without even using any of these specialized pre-training techniques. The first model, called RCI interaction, leverages a transformer based architecture that independently classifies rows and columns to identify relevant cells. While this model yields extremely high accuracy at finding cell values on recent benchmarks, a second model we propose, called RCI representation, provides a significant efficiency advantage for online QA systems over tables by materializing embeddings for existing tables. Experiments on recent benchmarks prove that the proposed methods can effectively locate cell values on tables (up to ~98% Hit@1 accuracy on WikiSQL lookup questions). Also, the interaction model outperforms the state-of-the-art transformer based approaches, pre-trained on very large table corpora (TAPAS and TaBERT), achieving ~3.4% and ~18.86% additional precision improvement on the standard WikiSQL benchmark.

pdf bib
Dynamic Facet Selection by Maximizing Graded Relevance
Michael Glass | Md Faisal Mahbub Chowdhury | Yu Deng | Ruchi Mahindru | Nicolas Rodolfo Fauceglia | Alfio Gliozzo | Nandana Mihindukulasooriya
Proceedings of the First Workshop on Interactive Learning for Natural Language Processing

Dynamic faceted search (DFS), an interactive query refinement technique, is a form of Human–computer information retrieval (HCIR) approach. It allows users to narrow down search results through facets, where the facets-documents mapping is determined at runtime based on the context of user query instead of pre-indexing the facets statically. In this paper, we propose a new unsupervised approach for dynamic facet generation, namely optimistic facets, which attempts to generate the best possible subset of facets, hence maximizing expected Discounted Cumulative Gain (DCG), a measure of ranking quality that uses a graded relevance scale. We also release code to generate a new evaluation dataset. Through empirical results on two datasets, we show that the proposed DFS approach considerably improves the document ranking in the search results.

2019

pdf bib
Automatic Taxonomy Induction and Expansion
Nicolas Rodolfo Fauceglia | Alfio Gliozzo | Sarthak Dash | Md. Faisal Mahbub Chowdhury | Nandana Mihindukulasooriya
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations

The Knowledge Graph Induction Service (KGIS) is an end-to-end knowledge induction system. One of its main capabilities is to automatically induce taxonomies from input documents using a hybrid approach that takes advantage of linguistic patterns, semantic web and neural networks. KGIS allows the user to semi-automatically curate and expand the induced taxonomy through a component called Smart SpreadSheet by exploiting distributional semantics. In this paper, we describe these taxonomy induction and expansion features of KGIS. A screencast video demonstrating the system is available in https://ibm.box.com/v/emnlp-2019-demo .