Nicole Beckage
2021
Selecting Informative Contexts Improves Language Model Fine-tuning
Richard Antonello
|
Nicole Beckage
|
Javier Turek
|
Alexander Huth
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
Language model fine-tuning is essential for modern natural language processing, but is computationally expensive and time-consuming. Further, the effectiveness of fine-tuning is limited by the inclusion of training examples that negatively affect performance. Here we present a general fine-tuning method that we call information gain filtration for improving the overall training efficiency and final performance of language model fine-tuning. We define the information gain of an example as the improvement on a validation metric after training on that example. A secondary learner is then trained to approximate this quantity. During fine-tuning, this learner selects informative examples and skips uninformative ones. We show that our method has consistent improvement across datasets, fine-tuning tasks, and language model architectures. For example, we achieve a median perplexity of 54.0 on a books dataset compared to 57.3 for standard fine-tuning. We present statistical evidence that offers insight into the improvements of our method over standard fine-tuning. The generality of our method leads us to propose a new paradigm for language model fine-tuning — we encourage researchers to release pretrained secondary learners on common corpora to promote efficient and effective fine-tuning, thereby improving the performance and reducing the overall energy footprint of language model fine-tuning.
Context or No Context? A preliminary exploration of human-in-the-loop approach for Incremental Temporal Summarization in meetings
Nicole Beckage
|
Shachi H Kumar
|
Saurav Sahay
|
Ramesh Manuvinakurike
Proceedings of the Third Workshop on New Frontiers in Summarization
Incremental meeting temporal summarization, summarizing relevant information of partial multi-party meeting dialogue, is emerging as the next challenge in summarization research. Here we examine the extent to which human abstractive summaries of the preceding increments (context) can be combined with extractive meeting dialogue to generate abstractive summaries. We find that previous context improves ROUGE scores. Our findings further suggest that contexts begin to outweigh the dialogue. Using keyphrase extraction and semantic role labeling (SRL), we find that SRL captures relevant information without overwhelming the the model architecture. By compressing the previous contexts by ~70%, we achieve better ROUGE scores over our baseline models. Collectively, these results suggest that context matters, as does the way in which context is presented to the model.
Search
Fix data
Co-authors
- Richard Antonello 1
- Shachi H. Kumar 1
- Alexander Huth 1
- Ramesh Manuvinakurike 1
- Saurav Sahay 1
- show all...